Learn More
We established two immortalized cell lines from cerebral cortex of normal (CNh) and trisomy 16 (CTb) mouse fetuses, an animal model of human trisomy 21. Those cells loaded with the fluorescent Ca2+ dyes, Indo-1 and Fluo-3, exhibited increments of intracellular Ca2+ ([Ca2+]i) in response to external glutamate, NMDA, AMPA and kainate. CTb cells exhibited(More)
Murine trisomy 16 is an animal model of human Down's syndrome. We have successfully established permanently growing cell lines from the cerebral cortex of normal and trisomy 16 foetal mice using an original procedure. These lines, named CNh (derived from a normal animal) and CTb (derived from a trisomic foetus), express neuronal markers. Considering that(More)
BACKGROUND Community acquired (CA) methicillin-resistant Staphylococcus aureus (MRSA) increasingly causes disease worldwide. USA300 has emerged as the predominant clone causing superficial and invasive infections in children and adults in the USA. Epidemiological studies suggest that USA300 is more virulent than other CA-MRSA. The genetic determinants that(More)
The threshold for bidirectional modification of synaptic plasticity is known to be controlled by several factors, including the balance between protein phosphorylation and dephosphorylation, postsynaptic free Ca(2+) concentration and NMDA receptor (NMDAR) composition of GluN2 subunits. Pannexin 1 (Panx1), a member of the integral membrane protein family,(More)
Down syndrome (DS) in humans, or trisomy of autosome 21, represents the hyperdiploidy that most frequently survives gestation, reaching an incidence of 1 in 700 live births. The condition is associated with multisystemic anomalies, including those affecting the central nervous system (CNS), determining a characteristic mental retardation. At a neuronal(More)
We have generated immortal neuronal cell lines from normal and trisomy 16 (Ts16) mice, a model for Down syndrome (DS). Ts16 lines overexpress DS-related genes (App, amyloid precursor protein; Sod1, Cu/Zn superoxide dismutase) and show altered cholinergic function (reduced choline uptake, ChAT expression and fractional choline release after stimulation). As(More)
We report the establishment of continuously growing cell lines from spinal cords of normal and trisomy 16 fetal mice. We show that both cell lines, named M4b (derived from a normal animal) and MTh (trisomic) possess neurological markers by immunohistochemistry (neuron specific enolase, synaptophysin, microtubule associated protein-2 [MAP-2], and choline(More)
We have established hippocampal cell lines from normal and trisomy 16 fetal mice, a model of human trisomy 21. Both cell lines, named H1b (derived from a normal animal) and HTk (trisomic) possess neuronal markers by immunohistochemistry (enolase, synaptophysin, microtubule associated protein-2, and choline acetyltransferase) and lack glial markers (glial(More)
Dynamin-2 is a pleiotropic GTPase whose best-known function is related to membrane scission during vesicle budding from the plasma or Golgi membranes. In the nervous system, dynamin-2 participates in synaptic vesicle recycling, post-synaptic receptor internalization, neurosecretion, and neuronal process extension. Some of these functions are shared with the(More)
The effect of glycine receptor activation on neurite outgrowth and survival was studied in 5 DIV (days in vitro) spinal neurons. These neurons were depolarized by spontaneous synaptic activity and by glycine, but not by glutamate. These responses were accompanied by increases in intracellular calcium concentration measured with Indo-1 and Fluo-3. Glycine(More)