Ana M Proenza

Learn More
BACKGROUND Mitochondrial dysfunction is thought to play a crucial role in the etiology of insulin resistance, in which skeletal muscle is the main tissue contributor. Sex differences in skeletal muscle insulin and antioxidant responses to high-fat-diet (HFD) feeding have been described. The aim of this study was to elucidate whether there is a sex(More)
Taking into account the sexual dimorphism previously reported regarding mitochondrial function and biogenesis in brown adipose tissue, the aim of the present study was to go further into these differences by investigating the effect of ovariectomy and 17-β estradiol (E2) replacement on brown adipose tissue mitochondrial function. In this study,(More)
BACKGROUND High-fat (HF) diet feeding usually leads to hyperphagia and body weight gain, but macronutrient proportions in the diet can modulate energy intake and fat deposition. The mechanisms of fat accumulation and mobilization may differ significantly between depots, and gender can also influence these differences. AIM To investigate, in rats of both(More)
Sexual dimorphism has been previously found both in mitochondrial biogenesis and function and in adiponectin expression of retroperitoneal WAT. However, little is known about the E2 effects on WAT mitochondrial function. Accordingly, the aim of this study was to examine in greater depth the role of estrogens in sexual dimorphism. This was accomplished by(More)
Considering the sexual dimorphism described in cardiac mitochondrial function and oxidative stress, we aimed to investigate the role of 17β-estradiol (E2) in these sex differences and the contribution of E2 receptors to these effects. As a model of chronic deprivation of ovarian hormones, we used ovariectomized (OVX) rats, half of which were treated with(More)
Marked sex-dependent differences in mitochondrial function and redox status have been found in brown adipose tissue (BAT) of control rats. Insulin also plays a role in the development and maintenance of this tissue. The aim was to investigate sexual dimorphism in the effects of diet-induced obesity on BAT mitochondrial function, as well as on insulin(More)
  • 1