Learn More
The response of osteoprogenitors to calcium (Ca(2+)) is of primary interest for both normal bone homeostasis and the clinical field of bone regeneration. The latter makes use of calcium phosphate-based bone void fillers to heal bone defects, but it is currently not known how Ca(2+) released from these ceramic materials influences cells in situ. Here, we(More)
Biomaterials can be endowed with biologically instructive properties by changing basic parameters such as elasticity and surface texture. However, translation from in vitro proof of concept to clinical application is largely missing. Porous calcium phosphate ceramics are used to treat small bone defects but in general do not induce stem cell(More)
In the past thirty years, a number of biomaterials have shown the ability to induce bone formation when implanted at heterotopic sites, an ability known as osteoinduction. Such biomaterials--osteoinductive biomaterials--hold great potential for the development of new therapies in bone regeneration. Although a variety of well characterised osteoinductive(More)
The advance of rapid prototyping techniques has significantly improved control over the pore network architecture of tissue engineering scaffolds. In this work, we have assessed the influence of scaffold pore architecture on cell seeding and static culturing, by comparing a computer designed gyroid architecture fabricated by stereolithography with a random(More)
The development of 3D scaffolds consisting of stacked multi-layered porous sheets featuring microchannels is proposed and investigated in this work. In this concept, the inner-porosity of the sheets allows diffusion of nutrients and signalling products between the layers whereas the microchannels facilitate nutrient supply on all layers as they provide(More)
Calcium phosphate (CaP) based ceramics are used as bone graft substitutes in the treatment of bone defects. The physico-chemical properties of these materials determine their bioactivity, meaning that molecular and cellular responses in the body will be tuned accordingly. In a previous study, we compared two porous CaP ceramics, hydroxyapatite (HA) and(More)
Upon contact with a biomaterial, cells and surrounding tissues respond in a manner dictated by the physicochemical and mechanical properties of the material. Traditionally, cellular responses are monitored using invasive analytical methods that report the expression of genes or proteins. These analytical methods involve assessing commonly used markers for a(More)
The microporosity of calcium phosphate (CaP) ceramics has been shown to have an essential role in osteoinduction by CaP ceramics after ectopic implantation. Here we show that it is not the microporosity but the size of surface microstructural features that is the most likely osteogenic factor. Two tricalcium phosphate (TCP) ceramics, namely TCP-S and TCP-B,(More)
Survival and growth of cellular grafts in tissue engineering (TE) are limited by the rate of oxygen (O(2)) and nutrient diffusion. As such, monitoring the levels of nutrients and O(2) available to the cells is essential to assess the physiology of the cells and to evaluate strategies aiming at improving nutrient availability. In this article, a reporter(More)
Circulating Tumor Cells (CTC) are rare cells originated from tumors that travel into the blood stream, extravasate to different organs of which only a small fraction will develop into metastasis. The presence of CTC enumerated with the CellSearch system is associated with a relative short survival and their continued presence after the first cycles of(More)