Ana Laura Colín-González

Learn More
Aged garlic extract (AGE) is an odorless garlic preparation containing S-allylcysteine (SAC) as its most abundant compound. A large number of studies have demonstrated the antioxidant activity of AGE and SAC in both in vivo--in diverse experimental animal models associated to oxidative stress--and in vitro conditions--using several methods to scavenge(More)
The endocannabinoid system (ECS) is involved in a considerable number of physiological processes in the Central Nervous System. Recently, a modulatory role of cannabinoid receptors (CBr) and CBr agonists on the reduction of the N-methyl-d-aspartate receptor (NMDAr) activation has been demonstrated. Quinolinic acid (QUIN), an endogenous analog of glutamate(More)
Quinolinic acid (QA)-induced overactivation of N-methyl-d-aspartate receptors yields excitotoxicity, oxidative stress and mitochondrial dysfunction, which altogether contribute to trigger a wide variety of toxic pathways with biochemical, behavioral and neuropathological alterations similar to those observed in Huntington's disease. Noteworthy, in the(More)
Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a transcription factor involved in the orchestration of antioxidant responses. Although its pharmacological activation has been largely hypothesized as a promising tool to ameliorate the progression of neurodegenerative events, the actual knowledge about its modulation in neurotoxic paradigms remains(More)
The neuroprotective properties of S-allyl cysteine (SAC) have been demonstrated in different neurotoxic paradigms, and it may be partially attributable to its antioxidant and anti-inflammatory profile. Recently, SAC has also been shown to induce neuroprotection in the rat striatum in a toxic model induced by 6-hydroxydopamine in rats through a concerted(More)
Several physiological processes in the CNS are regulated by the endocannabinoid system (ECS). Cannabinoid receptors (CBr) and CBr agonists have been involved in the modulation of the N-methyl-D-aspartate receptor (NMDAr) activation. Glutaric (GA), 3-hydroxyglutaric (3-OHGA), methylmalonic (MMA) and propionic (PA) acids are endogenous metabolites produced(More)
The brain of children affected by organic acidemias develop acute neurodegeneration linked to accumulation of endogenous toxic metabolites like glutaric (GA), 3-hydroxyglutaric (3-OHGA), methylmalonic (MMA) and propionic (PA) acids. Excitotoxic and oxidative events are involved in the toxic patterns elicited by these organic acids, although their single(More)
Probenecid (PROB) has been widely used for long time for different clinical purposes, from gout treatment to designs as a coadjutant for antibiotic agents. Among its many properties, the ability of PROB to preserve high concentrations of several metabolites and other agents in the CNS, together with its relative lack of side-effects, have made this drug a(More)
3-Hydroxykynurenine (3-HK), an intermediate metabolite of the kynurenine pathway, has been largely hypothesized as a neurotoxic molecule contributing to neurodegeneration in several experimental and clinical conditions. Interestingly, the balance in literature points to a dual role of this molecule in the CNS: in vitro studies describe neurotoxic and/or(More)
Kynurenine pathway is gaining attention due to the many metabolic processes in which it has been involved. The tryptophan conversion into several other metabolites through this pathway provides neuronal and redox modulators useful for maintenance of major functions in the brain. However, when physiopathological conditions prevail - i.e. oxidative stress,(More)