Ana Isabel Castillo

Learn More
To investigate the mechanisms involved in cannabidiol (CBD)-induced neuroprotection in hypoxic-ischemic (HI) immature brain, forebrain slices from newborn mice underwent oxygen and glucose deprivation in the presence of vehicle, or CBD alone or with selective antagonists of cannabinoid CB(1) and CB(2), and adenosine A(1) and A(2) receptors. CBD reduced(More)
The presence of functional cannabinoid CB2 receptors in the CNS has provoked considerable controversy over the past few years. Formerly considered as an exclusively peripheral receptor, it is now accepted that it is also present in limited amounts and distinct locations in the brain of several animal species, including humans. Furthermore, the inducible(More)
To test the neuroprotective effects of the nonpsychoactive cannabinoid cannabidiol (CBD), piglets received i.v. CBD or vehicle after hypoxia-ischemia (HI: temporary occlusion of both carotid arteries plus hypoxia). Nonhypoxic-ischemic sham-operated piglets remained as controls. Brain damage was studied by near-infrared spectroscopy (NIRS) and(More)
The endocannabinoid system is a promising therapeutic target in a wide variety of diseases. However, the non-desirable psychotropic effects of natural and synthetic cannabinoids have largely counteracted their clinical usefulness. These effects are mostly mediated by cannabinoid receptors of the CB(1) type, that exhibit a wide distribution in neuronal(More)
Although the effects of the peroxisome proliferator-activated receptors (PPARs) have been studied primarily in adipocytes and liver, the wide distribution of these receptors suggests that they might also play a role in other cell types. We present evidence that PPAR activators stimulate the expression of the prolactin gene in pituitary GH4C1 cells.(More)
BACKGROUND AND PURPOSE The endocannabinoid system may regulate glial cell functions and their responses to pathological stimuli, specifically, Alzheimer's disease. One experimental approach is the enhancement of endocannabinoid tone by blocking the activity of degradative enzymes, such as fatty acid amide hydrolase (FAAH). EXPERIMENTAL APPROACH We(More)
The vitamin D receptor (VDR) normally functions as a ligand-dependent transcriptional activator. Here we show that, in the presence of Ets-1, VDR stimulates the prolactin promoter in a ligand-independent manner, behaving as a constitutive activator. Mutations in the AF2 domain abolish vitamin D-dependent transactivation but do not affect constitutive(More)
Although the main role of 1alpha,25-dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)] is to regulate calcium homeostasis, the valuable therapeutic applications of this compound have led to the search of new 1,25-(OH)(2)D(3)-vitamin D receptor (VDR) ligands with less side effects. In this work we have characterized seven 1,25-(OH)(2)D(3) derivatives (ZK136607,(More)
Transcriptional regulation by nuclear receptors is mediated by recruitment of coactivators and corepressors. In the classical model, unliganded nonsteroidal receptors bind corepressors, such as the silencing mediator of thyroid and retinoid receptors (SMRT) or nuclear corepressor (NCoR), that are released upon ligand binding. We show here that, unlike other(More)
Cardiovascular disease is currently the predominant cause of mortality worldwide and its incidence is expected to increase significantly during the next decades owing to the unhealthy effects of modern lifestyle habits (e.g., obesity and lack of physical exercise). Cardiovascular death is frequently associated with acute myocardial infarction or stroke,(More)