Ana Isabel Calvo Alcalde

Learn More
Serotonin has been shown to alter the intestinal transport of ions and intestinal motility. These effects may interfere with each other, modulating the whole physiology of the intestine. We have previously shown that serotonin also alters the transport of nutrients. Thus, the aims of the present work were to determine the possible interference between the(More)
Renal reabsorption is the main mechanism that controls mannose homeostasis. This takes place through a specific Na-coupled uphill transport system, the molecular identity of which is unknown. We prepared and screened a size-selected rat kidney cortex cDNA library through the expression of mannose transport in Xenopus laevis oocytes. We have identified a(More)
In the present study, we have examined the cellular mechanisms mediating the regulation of renal proximal tubular sodium-coupled inorganic phosphate (Na/Pi) transport by thyroid hormone (T3) in young and aged rats. Young hypothyroid rats showed a marked decrease in Na/Pi cotransport activity, which was associated with parallel decreases in type II Na/Pi(More)
The serotonin transporter (SERT) has shown itself to be an effective pharmacological target in the treatment of mood disorders and some kinds of gastrointestinal syndromes. Most of the molecular studies of SERT in humans have been carried out using heterologous models. In this work, we have investigated the human enterocyte-like Caco-2 cell line as a(More)
TLR2 is a microbiota recognition receptor that has been described to contribute to intestinal homeostasis and to ameliorate inflammatory intestinal injury. In this context, serotonin (5-HT) has shown to be an essential intestinal physiological neuromodulator that is also involved in intestinal inflammatory diseases. Since the interaction between TLR2(More)
INTRODUCTION Breast cancer treatment in elderly patients is controversial. This single-centre study was conducted to review the treatment and outcomes for octogenarian women treated for breast cancer. METHODS Data from all patients aged 80 years or more with primary breast cancer treated at our institution between 1995 and 2012 were included. Patients(More)
Renal reabsorption appears to play a major role in d-mannose homeostasis. Here we show that in rat kidney, the transport of d-mannose by brush border membrane vesicles from tubular epithelial cells involves an uphill and rheogenic Na-dependent system, which is fully inhibited by d-mannose itself, incompletely inhibited by d-glucose, d-fructose, phloridzin,(More)
Serotonin is a neuromodulator mainly synthesized by intestinal enterochromaffin cells that regulate overall intestinal physiology. The serotonin transporter (SERT) determines the final serotonin availability and has been described as altered in inflammatory bowel diseases. IL-10 is an anti-inflammatory cytokine that is involved in intestinal inflammatory(More)
By using isolated membrane vesicles, we have investigated the tenet that D-glucose transport across the intestinal brush-border membrane involves at least two distinct, Na+-activated agencies (D-glucose transport systems S-1 and S-2), only one of which (S-1) can use methyl alpha-D-glucopyranoside (methyl alpha-glucoside) as a substrate. Our results with(More)
D-glucose transport across the intestinal brush-border membrane involves two transport systems designated here as systems 1 and 2. Kinetic properties for both D-glucose and methyl alpha-D-glucopyranoside transport were measured at 35 degrees C by using brush-border membrane vesicles prepared from either control, fasted (48 hr), or semistarved (10 days)(More)