Learn More
The retina's photoreceptor cells adjust their sensitivity to allow photons to be transduced over a wide range of light intensities. One mechanism thought to participate in sensitivity adjustments is Ca(2+) regulation of guanylate cyclase (GC) by guanylate cyclase-activating proteins (GCAPs). We evaluated the contribution of GCAPs to sensitivity regulation(More)
In retinal rods, Ca(2+) exerts negative feedback control on cGMP synthesis by guanylate cyclase (GC). This feedback loop was disrupted in mouse rods lacking guanylate cyclase activating proteins GCAP1 and GCAP2 (GCAPs(-/-)). Comparison of the behavior of wild-type and GCAPs(-/-) rods allowed us to investigate the role of the feedback loop in normal rod(More)
In rod photoreceptors, arrestin localizes to the outer segment (OS) in the light and to the inner segment (IS) in the dark. Here, we demonstrate that redistribution of arrestin between these compartments can proceed in ATP-depleted photoreceptors. Translocation of transducin from the IS to the OS also does not require energy, but depletion of ATP or GTP(More)
Efficient single-photon detection by retinal rod photoreceptors requires timely and reproducible deactivation of rhodopsin. Like other G protein-coupled receptors, rhodopsin contains multiple sites for phosphorylation at its COOH-terminal domain. Transgenic and electrophysiological methods were used to functionally dissect the role of the multiple(More)
Visual arrestin plays a crucial role in the termination of the light response in vertebrate photoreceptors by binding selectively to light-activated, phosphorylated rhodopsin. Arrestin localizes predominantly to the inner segments and perinuclear region of dark-adapted rod photoreceptors, whereas light induces redistribution of arrestin to the rod outer(More)
Although signals controlled by single molecules are expected to be inherently variable, rod photoreceptors generate reproducible responses to single absorbed photons. We show that this unexpected reproducibility-the consistency of amplitude and duration of rhodopsin activity-varies in a graded and systematic manner with the number but not the identity of(More)
Primary astrocyte cultures prepared from neonatal hippocampus, cerebral cortex and cerebellum were morphologically distinct. Cells from hippocampus and cortex were almost entirely protoplasmic, whereas cerebellar astrocytes had many processes; in the absence of serum these differences were accentuated. We compared the immunocontent and secretion of the(More)
The role of the carboxyl-terminal domain in rhodopsin transport was investigated using transgenic mice expressing a rhodopsin truncation mutant lacking the terminal 15 amino acids (S334ter). It was previously shown that S334ter translocates to the outer segment in the presence of endogenous rhodopsin. We now show that in the absence of endogenous rhodopsin(More)
PURPOSE Heterotrimeric G proteins are regulated by receptors that act as guanine nucleotide exchange factors (GEFs) and by RGS proteins, which act as guanosine triphosphatase (GTPase) activating proteins (GAPs). Guanosine diphosphate (GDP) dissociation inhibitors (GDIs), such as activators of G protein signaling (AGS)-1 and -3 and Leu-Gly-Asn(More)
PURPOSE To examine the biochemical characteristics of rod and cone arrestin with respect to their ability to quench the activity of light-activated rhodopsin in transgenic mice. METHODS The mouse rod opsin promoter was used to drive expression of mouse cone arrestin in rod photoreceptor cells of rod arrestin knockout (arr1-/-) mice. Suction electrode(More)