Learn More
A diverse set of more than 40 highly functionalized biaryls was synthesized successfully through the Suzuki-Miyaura cross-coupling reaction catalyzed by Pd nanoparticles supported in a functionalized mesoporous MOF (8 wt % Pd@MIL-101(Cr)-NH2 ). This could be achieved under some of the mildest conditions reported to date and a strong control over the(More)
A new set of covalent atomic radii has been deduced from crystallographic data for most of the elements with atomic numbers up to 96. The proposed radii show a well behaved periodic dependence that allows us to interpolate a few radii for elements for which structural data is lacking, notably the noble gases. The proposed set of radii therefore fills most(More)
A series of zirconium-based, metal-organic frameworks (MOFs) were tested for their ability to adsorb and remove selenate and selenite anions from aqueous solutions. MOFs were tested for adsorption capacity and uptake time at different concentrations. NU-1000 was shown to have the highest adsorption capacity, and fastest uptake rates for both selenate and(More)
The application of atomic layer deposition (ALD) to metal-organic frameworks (MOFs) offers a promising new approach to synthesize designer functional materials with atomic precision. While ALD on flat substrates is well established, the complexity of the pore architecture and surface chemistry in MOFs present new challenges. Through in situ synchrotron(More)
Tandem catalytic systems, often inspired by biological systems, offer many advantages in the formation of highly functionalized small molecules. Herein, a new metal-organic framework (MOF) with porphyrinic struts and Hf6 nodes is reported. This MOF demonstrates catalytic efficacy in the tandem oxidation and functionalization of styrene utilizing molecular(More)
The ever-emerging demands on miniaturization of electronic devices have pushed the development of innovative materials with desired properties. One major endeavor is the development of organic- or organic-inorganic hybrid-based electronics as alternatives or supplements to silicon-based devices. Herein we report the first observation of the coexistence of(More)
In situ pair distribution function (PDF) analyses and density functional theory (DFT) computations are used to probe local structural transitions of M6O8 nodes found in two metal organic frameworks (MOFs), NU-1000 and UiO-66, for M = Zr, Hf. Such transitions are found to occur without change to the global framework symmetry at temperatures within a range(More)
Zr-based metal-organic frameworks (MOFs) have been shown to be excellent catalyst supports in heterogeneous catalysis due to their exceptional stability. Additionally, their crystalline nature affords the opportunity for molecular level characterization of both the support and the catalytically active site, facilitating mechanistic investigations of the(More)
Postsynthetic functionalization of metal organic frameworks (MOFs) enables the controlled, high-density incorporation of new atoms on a crystallographically precise framework. Leveraging the broad palette of known atomic layer deposition (ALD) chemistries, ALD in MOFs (AIM) is one such targeted approach to construct diverse, highly functional, few-atom(More)