Learn More
A key question in developmental biology is how cells exchange positional information for proper patterning during organ development. In plant roots the radial tissue organization is highly conserved with a central vascular cylinder in which two water conducting cell types, protoxylem and metaxylem, are patterned centripetally. We show that this patterning(More)
The maintenance of stem cells in defined locations is crucial for all multicellular organisms. Although intrinsic factors and signals for stem cell fate have been identified in several species, it has remained unclear how these connect to the ability to reenter the cell cycle that is one of the defining properties of stem cells. We show that local reduction(More)
Plant cells are connected through plasmodesmata (PD), membrane-lined channels that allow symplastic movement of molecules between cells. However, little is known about the role of PD-mediated signaling during plant morphogenesis. Here, we describe an Arabidopsis gene, CALS3/GSL12. Gain-of-function mutations in CALS3 result in increased accumulation of(More)
The root cap has a central role in root growth, determining the growth trajectory and facilitating penetration into the soil. Root cap cells have specialized functions and morphologies, and border cells are released into the rhizosphere by specific cell wall modifications. Here, we demonstrate that the cellular maturation of root cap is redundantly(More)
Because plant cells do not migrate, cell division planes are crucial determinants of plant cellular architecture. In Arabidopsis roots, stringent control of cell divisions leads to a virtually invariant division pattern, including those that create new tissue layers. However, the mechanisms that control oriented cell divisions are hitherto poorly(More)
In the Arabidopsis root, asymmetric stem-cell divisions produce daughters that form the different root cell types. Here we report the establishment of a confocal tracking system that allows the analysis of numbers and orientations of cell divisions in root stem cells. The system provides direct evidence that stem cells have lower division rates than cells(More)
In Arabidopsis thaliana, lateral roots (LRs) initiate from anticlinal cell divisions of pericycle founder cells. The formation of LR primordia is regulated antagonistically by the phytohormones cytokinin and auxin. It has previously been shown that cytokinin has an inhibitory effect on the patterning events occurring during LR formation. However, the(More)
To obtain development information of individual plant cells, it is necessary to perform in vivo imaging of the specimen under study, through time-lapse confocal microscopy. Automation of cell detection/marking process is important to provide research tools in order to ease the search for special events, such as cell division. In this paper we discuss an(More)
In vivo observation and tracking of cell division in the Ara-bidopsis thaliana root meristem, by time-lapse confocal microscopy, is central to biology research. The research herein described is based on large amount of image data, which must be analyzed to determine the location and state of cells. The possibility of automating the process of cell(More)