Learn More
In the fission yeast Schizosaccharomyces pombe, several genes including cdc15+, spo12+, fin1+, slp1+, ace2+ and plo1+ are periodically expressed during M phase. The products of these genes control various aspects of cell cycle progression including sister chromatid separation, septation and cytokinesis. We demonstrate that periodic expression of these genes(More)
BACKGROUND Specific histone modifications can perform several cellular functions, for example, as signals to recruit trans-acting factors and as modulators of chromatin structure. Acetylation of Lys14 of histone H3 is the main target of many histone acetyltransferases in vitro and may play a central role in the stability of the nucleosome. This study is(More)
Enzymatic extracts from a gcn5 mutant and wild-type strains of Saccharomyces cerevisiae were chromatographically fractionated and the histone acetyltransferase activities compared. When free histones were used as substrate, extracts from wild-type cells showed two peaks of activity on histone H3 but extracts from gcn5 mutant cells showed only one. With(More)
We have analyzed the histone acetyltransferase enzymes obtained from a series of yeast hat1, hat2, and gcn5 single mutants and hat1,hat2 and hat1,gcn5 double mutants. Extracts prepared from both hat1 and hat2 mutant strains specifically lack the following two histone acetyltransferase activities: the well known cytoplasmic type B enzyme and a free histone(More)
HAT-B is a yeast histone acetyltransferase composed of Hat1, Hat2 and Hif1 proteins. We demonstrate that a hat2 mutant or a hat1hat2 double mutant, but not a hat1 mutant, have an extended life-span. Transcriptome analysis shows that the single hat mutants are not very different from wild type. However, the comparison of the hat1 and hat2 transcriptomes(More)
Gcn5p is the catalytic subunit of several type A histone acetyltransferases (HATs). Previous studies performed under a limited range of solution conditions have found that nucleosome core particles and nucleosomal arrays can be acetylated by Gcn5p only when it is complexed with other proteins, e.g. Gcn5-Ada, HAT-A2, and SAGA. Here we demonstrate that when(More)
Grapevine leafroll-associated virus 3 (GLRaV-3) has a worldwide distribution and is the most economically important virus that causes grapevine leafroll disease. Reliable, sensitive, and specific methods are required for the detection of the pathogen in order to assure the production of healthy plant material and control of the disease. Although different(More)
  • 1