Learn More
Subversion of Rho family small GTPases, which control actin dynamics, is a common infection strategy used by bacterial pathogens. In particular, Salmonella enterica serovar Typhimurium, Shigella flexneri, enteropathogenic Escherichia coli (EPEC), and enterohemorrhagic Escherichia coli (EHEC) translocate type III secretion system (T3SS) effector proteins to(More)
Enteropathogenic Escherichia coli (EPEC) strains are defined as extracellular pathogens which nucleate actin rich pedestal-like membrane extensions on intestinal enterocytes to which they intimately adhere. EPEC infection is mediated by type III secretion system effectors, which modulate host cell signaling. Recently we have shown that the WxxxE effector(More)
Enteropathogenic Escherichia coli (EPEC) subverts actin dynamics in eukaryotic cells by injecting effector proteins via a type III secretion system. First, WxxxE effector Map triggers transient formation of filopodia. Then, following recovery from the filopodial signals, EPEC triggers robust actin polymerization via a signalling complex comprising Tir and(More)
Subversion of the eukaryotic cell cytoskeleton is a virulence strategy employed by many bacterial pathogens. Due to the pivotal role of Rho GTPases in actin dynamics they are common targets of bacterial effector proteins and toxins. IpgB1, IpgB2 (Shigella), SifA, SifB (Salmonella) and Map and EspM (attaching and effacing pathogens) constitute a family of(More)
Rho GTPases are common targets of bacterial toxins and type III secretion system effectors. IpgB1 and IpgB2 of Shigella and Map of enteropathogenic (EPEC) and enterohemorrhagic (EHEC) Escherichia coli were recently grouped together on the basis that they share a conserved WxxxE motif. In this study, we characterized six WxxxE effectors from attaching and(More)
We investigated how the type III secretion system WxxxE effectors EspM2 of enterohaemorrhagic Escherichia coli, which triggers stress fibre formation, and SifA of Salmonella enterica serovar Typhimurium, which is involved in intracellular survival, modulate Rho GTPases. We identified a direct interaction between EspM2 or SifA and nucleotide-free RhoA.(More)
Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic Escherichia coli (EHEC) are important human pathogens that rely on translocation of type III secretion system (T3SS) effectors for subversion of signal transduction pathways and colonization of the mammalian gut mucosa. While a core set of effectors is conserved between EPEC and EHEC strains, a(More)
Enterohaemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) translocate dozens of type III secretion system effectors, including the WxxxE effectors Map, EspM and EspT that activate Rho GTPases. While map, which is carried on the LEE pathogenicity island, is absolutely conserved among EPEC and EHEC strains, the prevalence of espM and espT(More)
Root exudates have important, yet incompletely known, roles in plant physiology, mainly in rhizosphere interactions with other organisms. Proline might play a critical role in protecting plants under stress, particularly under saline conditions. However, as far as we know, no attempts have been made to determine the proline content of root exudates. Here,(More)
The hallmark of enteropathogenic Escherichia coli (EPEC) infection is the formation of actin-rich pedestal-like structures, which are generated following phosphorylation of the bacterial effector Tir by cellular Src and Abl family tyrosine kinases. This leads to recruitment of the Nck-WIP-N-WASP complex that triggers Arp2/3-dependent actin polymerization in(More)