Learn More
We propose a semiparametric multivariate skew-normal joint model for multivariate longitudinal and multivariate survival data. One main feature of the posited model is that we relax the commonly used normality assumption for random effects and within-subject error by using a centered Dirichlet process prior to specify the random effects distribution and(More)
This paper presents a novel semiparametric joint model for multivariate longitudinal and survival data (SJMLS) by relaxing the normality assumption of the longitudinal outcomes, leaving the baseline hazard functions unspecified and allowing the history of the longitudinal response having an effect on the risk of dropout. Using Bayesian penalized splines to(More)
The normality assumption of measurement error is a widely used distribution in joint models of longitudinal and survival data, but it may lead to unreasonable or even misleading results when longitudinal data reveal skewness feature. This paper proposes a new joint model for multivariate longitudinal and multivariate survival data by incorporating a(More)
  • 1