Learn More
Because of its critical role in the control of cell proliferation and differentiation, we postulated that E2F-1 could have a role in murine development. To this end, the organ and developmental expression of the E2F-1 transcription factor was analyzed from mid-gestation to late-stage embryogenesis. We demonstrate that the mRNA levels for E2F-1 and its(More)
E2F-1, a member of the E2F transcription factor family, contributes to the regulation of the G1-to-S phase transition in higher eukaryotic cells. E2F-1 forms a heterodimer with DP-1 and binds to several cell cycle regulatory proteins, including the retinoblastoma family (RB, p107, p130) and cyclin A/CDK2 complexes. We have analyzed E2F-1 phosphorylation and(More)
Pax6 is a paired box containing transcription factor that resides at the top of a genetic hierarchy controlling eye development. It continues to be expressed in tissues of the adult eye, but its role in this capacity is unclear. Pax6 is present in the adult corneal epithelium, and we showed that the amount of Pax6 is increased at the migrating front as the(More)
Alkylation of Torpedo californica purified nicotinic acetylcholine receptor (AChR) with N-phenylmaleimide (NPM) under nonreducing conditions led to ion flux inhibition without affecting ligand binding properties [Yee, A. S., Corey, D. E. & McNamee, M. G. (1986) Biochemistry 25, 2110-2119]. The gamma subunit was shown to be preferentially labeled by [3H]NPM(More)
Oncogene-mediated premature senescence has emerged as a potential tumor-suppressive mechanism in early cancer transitions. Previous work shows that RAS and p38 MAPK participate in premature senescence, but transcriptional effectors have not been identified. Here, we demonstrate that the HBP1 transcriptional repressor participates in RAS- and p38(More)
The Cdk inhibitor p21(WAF1/CIP1) is a negative regulator of the cell cycle, although its expression is induced by a number of mitogens that promote cell proliferation. We have found that E2F1 and E2F3, transcription factors that activate genes required for cell cycle progression, are strong activators of the p21 promoter. In contrast, HBP1 (HMG-box(More)
Differentiation is a coordinated process of irreversible cell cycle exit and tissue-specific gene expression. To probe the functions of the retinoblastoma protein (RB) family in cell differentiation, we isolated HBP1 as a specific target of RB and p130. Our previous work showed that HBP1 was a transcriptional repressor and a cell cycle inhibitor. The(More)
A natural and intuitive method is proposed to help a user manipulate an object in a virtual environment. The method does not need to assign special properties to the object faces in advance and does not require special hardware. Instead, it uses only the visual constraints of motion among object faces that are dynamically selected by a real-time collision(More)
The activity of DNA methyltransferase 1 (DNMT1) is associated with diverse biological activities, including cell proliferation, senescence, and cancer development. In this study, we demonstrated that the HMG box-containing protein 1 (HBP1) transcription factor is a new repressor of DNMT1 in a complex mechanism during senescence. The DNMT1 gene contains an(More)
A prominent feature of cell differentiation is the initiation and maintenance of an irreversible cell cycle arrest with the complex involvement of the retinoblastoma (RB) family (RB, p130, p107). We have isolated the HBP1 transcriptional repressor as a potential target of the RB family in differentiated cells. By homology, HBP1 is a sequence-specific HMG(More)