Amy N Loveland

Learn More
We show here that the high-molecular-weight protein (HMWP or pUL48; 253 kDa) of human cytomegalovirus (HCMV) is a functionally competent deubiquitinating protease (DUB). By using a suicide substrate probe specific for ubiquitin-binding cysteine proteases (DUB probe) to screen lysates of HCMV-infected cells, we found just one infected-cell-specific DUB.(More)
Assembly of many spherical virus capsids is guided by an internal scaffolding protein or group of proteins that are often cleaved and eliminated in connection with maturation and incorporation of the genome. In cytomegalovirus there are at least two proteins that contribute to this scaffolding function; one is the maturational protease precursor (pUL80a),(More)
The cytomegalovirus (CMV) maturational protease, assemblin, contains an "internal" (I) cleavage site absent from its homologs in other herpesviruses. Blocking this site for cleavage did not prevent replication of the resulting I(-) mutant virus. However, cells infected with the I(-) virus showed increased amounts of a fragment produced by cleavage at the(More)
Scaffolding proteins of spherical prokaryotic and eukaryotic viruses have critical roles in capsid assembly. The primary scaffolding components of cytomegalovirus, called the assembly protein precursor (pAP, pUL80.5) and the maturational protease precursor (pPR, pUL80a), contain two nuclear localization sequences (NLS1 and NLS2), at least one of which is(More)
Capsid assembly among the herpes-group viruses is coordinated by two related scaffolding proteins. In cytomegalovirus (CMV), the main scaffolding constituent is called the assembly protein precursor (pAP). Like its homologs in other herpesviruses, pAP is modified by proteolytic cleavage and phosphorylation. Cleavage is essential for capsid maturation and(More)
Chemical rescue is an established approach that offers a directed strategy for designing mutant enzymes in which activity can be restored by supplying an appropriate exogenous compound. This method has been used successfully to study a broad range of enzymes in vitro, but its application to living systems has received less attention. We have investigated(More)
  • 1