Amy M Rodriguez

Learn More
Two novel cDNAs, DNAS1L2 and DNAS1L3, are predicted to encode proteins of 299 and 305 amino acids with 56 and 46% residue identity (71 and 63% similarity), respectively, to deoxyribonuclease I (DNase I). DNAS1L2 is located on a 16p13.3 cosmid, while DNAS1L3 maps to 3p14.3-p21.1 by fluorescence in situ hybridization and by PCR analysis of a radiation hybrid(More)
We report a partial cDNA sequence that encodes a protein, dubbed "polycystwin," with 21% identify and 46% similarity to amino acids 3688-4109 of the carboxyl terminus of polycystin, the gene product of the autosomal dominant polycystic kidney disease locus located on chromosome 16 at band p13 (PKD1). Northern analysis demonstrates that the R48321 gene is(More)
The crystal structure of EcoRV endonuclease bound to non-cognate DNA at 2.0 angstroms resolution shows that very small structural adaptations are sufficient to ensure the extreme sequence specificity characteristic of restriction enzymes. EcoRV bends its specific GATATC site sharply by 50 degrees into the major groove at the center TA step, generating(More)
The methylation of specific lysine residues in histone H3 is integral to transcription regulation; however, little is known about how combinations of methylated lysine residues act in concert to regulate genome-wide transcription. We have systematically mutated methylated histone lysine residues in yeast and found that the triple mutation of H3K4, H3K36,(More)
Acetylated and methylated lysine residues in histone H3 play important roles in regulating yeast gene expression and other cellular processes. Previous studies have suggested that histone H3 acetylated and methylated lysine residues may functionally interact through interdependent pathways to regulate gene transcription. A common genetic test for functional(More)
  • 1