Learn More
Ca(v)2.1 channels, which mediate P/Q-type Ca2+ currents, undergo Ca2+/calmodulin (CaM)-dependent inactivation and facilitation that can significantly alter synaptic efficacy. Here we report that the neuronal Ca2+-binding protein 1 (CaBP1) modulates Ca(v)2.1 channels in a manner that is markedly different from modulation by CaM. CaBP1 enhances inactivation,(More)
CaBP1-8 are neuronal Ca(2+)-binding proteins with similarity to calmodulin (CaM). Here we show that CaBP4 is specifically expressed in photoreceptors, where it is localized to synaptic terminals. The outer plexiform layer, which contains the photoreceptor synapses with secondary neurons, was thinner in the Cabp4(-/-) mice than in control mice. Cabp4(-/-)(More)
Ca2+-binding protein-1 (CaBP1) is a Ca2+-binding protein that is closely related to calmodulin (CaM) and localized in somatodendritic regions of principal neurons throughout the brain, but how CaBP1 participates in postsynaptic Ca2+ signaling is not known. Here, we describe a novel role for CaBP1 in the regulation of Ca2+ influx through Ca(v)1.2 (L-type)(More)
In the hippocampal formation, Ca(v)1.2 (L-type) voltage-gated Ca(2+) channels mediate Ca(2+) signals that can trigger long-term alterations in synaptic efficacy underlying learning and memory. Immunocytochemical studies indicate that Ca(v)1.2 channels are localized mainly in the soma and proximal dendrites of hippocampal pyramidal neurons, but(More)
Ca(v)1 (L-type) channels and calmodulin-dependent protein kinase II (CaMKII) are key regulators of Ca(2+) signaling in neurons. CaMKII directly potentiates the activity of Ca(v)1.2 and Ca(v)1.3 channels, but the underlying molecular mechanisms are incompletely understood. Here, we report that the CaMKII-associated protein densin is required for(More)
Ca2+-dependent facilitation and inactivation (CDF and CDI) of Cav2.1 channels modulate presynaptic P/Q-type Ca2+ currents and contribute to activity-dependent synaptic plasticity. This dual feedback regulation by Ca2+ involves calmodulin (CaM) binding to the alpha1 subunit (alpha12.1). The molecular determinants for Ca2+-dependent modulation of Cav2.1(More)
Ca(2+)-binding protein-1 (CaBP1) and calmodulin (CaM) are highly related Ca(2+)-binding proteins that directly interact with, and yet differentially regulate, voltage-gated Ca(2+) channels. Whereas CaM enhances inactivation of Ca(2+) currents through Ca(v)1.2 (L-type) Ca(2+) channels, CaBP1 completely prevents this process. How CaBP1 and CaM mediate such(More)
GRP78, also known as BiP, is a central regulator of endoplasmic reticulum (ER) homeostasis due to its multiple functional roles in protein folding, ER calcium binding, and controlling of the activation of transmembrane ER stress sensors. ER stress induction of GRP78/BiP represents a major prosurvival arm of the unfolded protein response (UPR). However, the(More)
Sound coding at the auditory inner hair cell synapse requires graded changes in neurotransmitter release, triggered by sustained activation of presynaptic Ca(v)1.3 voltage-gated Ca(2+) channels. Central to their role in this regard, Ca(v)1.3 channels in inner hair cells show little Ca(2+)-dependent inactivation, a fast negative feedback regulation by(More)
Dysregulation of L-type Ca(2+) currents in sinoatrial nodal (SAN) cells causes cardiac arrhythmia. Both Ca(v)1.2 and Ca(v)1.3 channels mediate sinoatrial L-type currents. Whether these channels exhibit differences in modulation and localization, which could affect their contribution to pacemaking, is unknown. In this study, we characterized(More)