Learn More
Mouse embryonic stem cells are pluripotent cells that are derived from the inner cell mass of blastocysts. When induced to synchronously enter a program of differentiation in vitro, they form embryoid bodies that contain cells of the mesodermal, hematopoietic, endothelial, muscle, and neuronal lineages. Here, we used a panel of marker genes with early(More)
The endothelium of the adult vasculature is normally quiescent, with the exception of the vasculature of the female reproductive system. However, in response to appropriate stimuli (ie, wound healing, atherosclerosis, tumor growth and metastasis, arthritis) the vasculature becomes activated and grows new capillaries through angiogenesis. We have recently(More)
Vascular endothelial growth factor (VEGF) has neurotrophic and neuroprotective as well as angiogenic properties, but the pathways involved in VEGF-mediated neuronal survival have not been identified. We found previously that VEGF protects cultured neural cells from death induced by serum withdrawal or hypoxia via the activation of VEGF-2/fetal liver(More)
Using retroviral entrapment vectors, we identified a novel mouse gene whose expression is restricted to vascular endothelial cells and their precursors in the yolk sac blood islands. A 3.68-kb cDNA corresponding to the endogenous transcript was isolated using genomic DNA flanking the entrapment vector insertion as a probe. We have named this gene Vezf1 for(More)
Mammalian development is orchestrated by a variety of cellular proteins with expression that is regulated precisely. Although some of the genes encoding these factors have been identified, largely by homology to those of simpler organisms, the majority of them presumably remain unknown. We report here on the results of a large-scale genetic screen that can(More)
Organic anion transporters play an essential role in eliminating a wide range of organic anions including endogenous compounds, xenobiotics, and their metabolites from kidney, thereby preventing their potentially toxic effects within the body. The goal of this study was to extend our previous study on the functional characterization and post-translational(More)
We have characterized a retroviral promoter-trap insertion into a novel mammalian septin gene, Sep3. Its predicted amino acid sequence shares significant homology to that of Saccharomyces cerevisiae CDC3, CDC10, CDC11, CDC12, the Drosophila genes Pnut, Sep1, Sep2, and the mammalian genes BH5, CDC10, Nedd5, Diff6, and Sep2, which are implicated in(More)
  • 1