Learn More
Cardiac sympathetic stimulation activates beta-adrenergic (beta-AR) receptors and protein kinase A (PKA) phosphorylation of proteins involved in myocyte Ca regulation. The Na/K-ATPase (NKA) is essential in regulating intracellular [Na] ([Na]i), which in turn affects [Ca]i via Na/Ca exchange. However, how PKA modifies NKA function is unknown. Phospholemman(More)
Lysophosphatidic acid (LPA) is a simple lipid with many important biological functions such as the regulation of cellular proliferation, cellular migration, differentiation, and suppression of apoptosis. Although a direct angiogenic effect of LPA has not been reported to date, there are indications that LPA promotes angiogenesis. In addition, LPA is a(More)
Species differences in ligand binding to A1 adenosine receptors were localized to the seventh transmembrane (TM7) region based on the binding of [8-3H]cyclopentyl-1, 3-dipropylxanthine and three other ligands to wild type and six bovine/canine interspecies receptor chimeras expressed in COS-1 cells. Subsequent site-directed mutagenesis experiments(More)
Rapid and precise control of Na(+)/Ca(2+) exchanger (NCX1) activity is essential in the maintenance of beat-to-beat Ca(2+) homeostasis in cardiac myocytes. Here, we show that phospholemman (PLM), a 15-kDa integral sarcolemmal phosphoprotein, is a novel endogenous protein inhibitor of cardiac NCX1. Using a heterologous expression system that is devoid of(More)
Using the polymerase chain reaction, an A3 adenosine receptor has been cloned from the hypophysial par tuberalis of sheep. The clone encodes a 317-amino acid protein that is 72% identical to the rat A3 adenosine receptor. In contrast to rat, where abundant A3 mRNA transcript is found primarily in testis, the sheep transcript is most abundant in lung,(More)
Four subtypes of adenosine receptors have recently been cloned from thyroid, brain and testis. In this review we have summarised properties of these purinergic receptors. The cloned A1 and A2 subtypes are probably similar or identical to receptors that exist on cardiac and vascular tissues, respectively. A comparison of the amino acid sequences of A1, A2a,(More)
Cardiac Na(+)-K(+)-ATPase (NKA) regulates intracellular Na(+), which in turn affects intracellular Ca(2+) and contractility via the Na(+)/Ca(2+) exchanger. Extracellular K(+) concentration ([K(+)]) is a central regulator of NKA activity. Phospholemman (PLM) has recently been recognized as a critical regulator of NKA in the heart. PLM reduces the(More)
A bovine brain adenosine A1 receptor cDNA encoding a 326 amino acid protein has been identified. This cDNA, which encodes a protein greater than 90% identical to analogous rat and dog receptors, was transiently expressed in COS-1 cells. Recombinant receptors exhibited the features of bovine A1 receptors that distinguish it from rat and canine receptors,(More)
Because phospholemman (PLM) regulates the Na(+)/K(+) pump (NKA) and is a major cardiac phosphorylation target for both protein kinase A (at Ser68) and protein kinase C (PKC) (at both Ser63 and Ser68), we evaluated whether PLM mediates the PKC-dependent regulation of NKA function and protein kinase A/PKC crosstalk in ventricular myocytes. PKC was activated(More)
Phospholemman (PLM) expression was increased in rat hearts after myocardial infarction (MI). Overexpression of PLM in normal adult rat cardiac myocytes altered contractile function and cytosolic Ca(2+) concentration ([Ca(2+)](i)) homeostasis in a manner similar to that observed in post-MI myocytes. In this study, we tested whether PLM downregulation in(More)