Learn More
Closed-loop decoder adaptation (CLDA) shows great promise to improve closed-loop brain-machine interface (BMI) performance. Developing adaptation algorithms capable of rapidly improving performance, independent of initial performance, may be crucial for clinical applications where patients have limited movement and sensory abilities due to motor deficits.(More)
Neuroplasticity may play a critical role in developing robust, naturally controlled neuroprostheses. This learning, however, is sensitive to system changes such as the neural activity used for control. The ultimate utility of neuroplasticity in real-world neuroprostheses is thus unclear. Adaptive decoding methods hold promise for improving neuroprosthetic(More)
OBJECTIVE Intracortical brain-machine interfaces (BMIs) have predominantly utilized spike activity as the control signal. However, an increasing number of studies have shown the utility of local field potentials (LFPs) for decoding motor related signals. Currently, it is unclear how well different LFP frequencies can serve as features for continuous,(More)
Much progress has been made in brain-machine interfaces (BMI) using decoders such as Kalman filters and finding their parameters with closed-loop decoder adaptation (CLDA). However, current decoders do not model the spikes directly, and hence may limit the processing time-scale of BMI control and adaptation. Moreover, while specialized CLDA techniques for(More)
Performing closed-loop modifications of a brain-machine interface (BMI) decoder is a technique that shows great promise for improving performance. We compare two algorithms for implementing adaptations that update decoder parameters on different time-scales (discrete batches vs. online), and present experimental results of a non-human primate performing a(More)
Brain-machine interfaces (BMIs) are dynamical systems whose properties ultimately influence performance. For instance, a 2-D BMI in which cursor position is controlled using a Kalman filter will, by default, create an attractor point that "pulls" the cursor to particular points in the workspace. If created unintentionally, such effects may not be beneficial(More)
Brain-machine interfaces (BMI) create novel sensorimotor pathways for action. Much as the sensorimotor apparatus shapes natural motor control, the BMI pathway characteristics may also influence neuroprosthetic control. Here, we explore the influence of control and feedback rates, where control rate indicates how often motor commands are sent from the brain(More)
Closed-loop decoder adaptation (CLDA) is an emerging paradigm for achieving rapid performance improvements in online brain-machine interface (BMI) operation. Designing an effective CLDA algorithm requires making multiple important decisions, including choosing the timescale of adaptation, selecting which decoder parameters to adapt, crafting the(More)
A fundamental organizational principle of the primate motor system is cortical control of contralateral limb movements. Motor areas also appear to play a role in the control of ipsilateral limb movements. Several studies in monkeys have shown that individual neurons in primary motor cortex (M1) may represent, on average, the direction of movements of the(More)
Brain-machine interfaces (BMIs) are an emerging technology with great promise for developing restorative therapies for those with disabilities. BMIs also create novel, well-defined functional circuits for action that are distinct from the natural sensorimotor apparatus. Closed-loop control of BMI systems can also actively engage learning and adaptation.(More)