Amy L. Abdulovic

Learn More
A high level of transcription has been associated with elevated spontaneous mutation and recombination rates in eukaryotic organisms. To determine whether the transcription level is directly correlated with the degree of genomic instability, we have developed a tetracycline-regulated LYS2 reporter system to modulate the transcription level over a broad(More)
The mechanisms by which imbalanced dNTPs induce mutations have been well characterized within a test tube, but not in vivo. We have examined mechanisms by which dNTP imbalances induce genome instability in strains of Saccharomyces cerevisiae with different amino acid substitutions in Rnr1, the large subunit of ribonucleotide reductase. These strains have(More)
The Polzeta translesion synthesis (TLS) DNA polymerase is responsible for over 50% of spontaneous mutagenesis and virtually all damage-induced mutagenesis in yeast. We previously demonstrated that reversion of the lys2DeltaA746 -1 frameshift allele detects a novel type of +1 frameshift that is accompanied by one or more base substitutions and depends(More)
UV irradiation, a known carcinogen, induces the formation of dipyrimidine dimers with the predominant lesions being cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone adducts (6-4PPs). The relative roles of the yeast translesion synthesis DNA polymerases Pol zeta and Pol eta in UV survival and mutagenesis were examined using strains(More)
DNA lesions can stall or block high-fidelity polymerases, thus inhibiting replication. To bypass such lesions, low-fidelity translesion synthesis (TLS) polymerases can be used to insert a nucleotide across from the lesion or extend from a lesion:base mispair. When DNA repair is compromised in Saccharomyces cerevisiae, spontaneous DNA lesions can lead to a(More)
Elucidating the sources of genetic variation within microsatellite alleles has important implications for understanding the etiology of human diseases. Mismatch repair is a well described pathway for the suppression of microsatellite instability. However, the cellular polymerases responsible for generating microsatellite errors have not been fully(More)
Translesion synthesis (TLS) DNA polymerases are specialized to bypass lesions that block replicative polymerases and prevent complete genome duplication. Current TLS models hypothesize that PCNA, the polymerase processivity clamp, is important for regulating the access and loading of the low fidelity TLS polymerases onto DNA in response to(More)
Mutagenesis is a prerequisite for evolution and also is an important contributor to human diseases. Most mutations in actively dividing cells originate during DNA replication as errors introduced when copying an undamaged DNA template or during the bypass of DNA lesions. In addition, mutations can be introduced during the repair of DNA double-strand breaks(More)
  • 1