Amy Kuceyeski

Hooman Kamel3
Babak B Navi3
Costantino Iadecola3
Learn More
Patterns of dementia are known to fall into dissociated but dispersed brain networks, suggesting that the disease is transmitted along neuronal pathways rather than by proximity. This view is supported by neuropathological evidence for "prion-like" transsynaptic transmission of disease agents like misfolded tau and beta amyloid. We mathematically model this(More)
Both the size and location of injury in the brain influences the type and severity of cognitive or sensorimotor dysfunction. However, even with advances in MR imaging and analysis, the correspondence between lesion location and clinical deficit remains poorly understood. Here, structural and diffusion images from 14 healthy subjects are used to create(More)
Whole brain weighted connectivity networks were extracted from high resolution diffusion MRI data of 14 healthy volunteers. A statistically robust technique was proposed for the removal of questionable connections. Unlike most previous studies our methods are completely adapted for networks with arbitrary weights. Conventional statistics of these weighted(More)
The aim of this work was to quantitatively model cross-sectional relationships between structural connectome disruptions caused by cerebral infarction and measures of clinical performance. Imaging biomarkers of 41 ischemic stroke patients (72.0 ± 12.0 years, 20 female) were related to their baseline performance in 18 cognitive, physical and daily life(More)
Interstitial concentration of amyloid beta (Aß) is positively related to synaptic activity in animal experiments. In humans, Aß deposition in Alzheimer's disease overlaps with cortical regions highly active earlier in life. White matter lesions (WML) disrupt connections between gray matter (GM) regions which in turn changes their activation patterns. Here,(More)
Accurate prediction of brain dysfunction caused by disease or injury requires the quantification of resultant neural connectivity changes compared with the normal state. There are many methods with which to assess anatomical changes in structural or diffusion magnetic resonance imaging, but most overlook the topology of white matter (WM) connections that(More)
BACKGROUND AND PURPOSE The Network Modification (NeMo) Tool uses a library of brain connectivity maps from normal subjects to quantify the amount of structural connectivity loss caused by focal brain lesions. We hypothesized that the Network Modification Tool could predict remote brain tissue loss caused by poststroke loss of connectivity. METHODS(More)
Unraveling the relationship between molecular signatures in the brain and their functional, architectonic, and anatomic correlates is an important neuroscientific goal. It is still not well understood whether the diversity demonstrated by histological studies in the human brain is reflected in the spatial patterning of whole brain transcriptional profiles.(More)
Stroke is a leading cause of serious long-term disability worldwide. Functional outcome depends on stroke location, severity, and early intervention. Conventional rehabilitation strategies have limited effectiveness, and new treatments still fail to keep pace, in part due to a lack of understanding of the different stages in brain recovery and the vast(More)
AIMS describe a new "profilometry" framework for the multimetric analysis of white matter tracts, and demonstrate its application to multiple sclerosis (MS) with radial diffusivity (RD) and myelin water fraction (MWF). METHODS A cohort of 15 normal controls (NC) and 141 MS patients were imaged with T1, T2 FLAIR, T2 relaxometry and diffusion MRI (dMRI)(More)