Learn More
The therapeutic benefits of dopamine (DA) agonists after traumatic brain injury (TBI) imply a role for DA systems in mediating functional deficits post-TBI. We investigated how experimental TBI affects striatal dopamine systems using fast scan cyclic voltammetry (FSCV), western blot, and d-amphetamine-induced rotational behavior. Adult male Sprague-Dawley(More)
Dopamine (DA) systems are implicated in cognitive deficits following traumatic brain injury (TBI). Rodent studies have demonstrated that both environmental enrichment (EE) and sex hormones can influence DA systems. The dopamine transporter (DAT) plays a crucial role in regulating DA transmission, and previous work shows that DAT is decreased after TBI in(More)
Traumatic brain injury (TBI) represents a significant cause of death and disability in industrialized countries. Of particular importance to patients the chronic effect that TBI has on cognitive function. Therapeutic strategies have been difficult to evaluate because of the complexity of injuries and variety of patient presentations within a TBI population.(More)
Post-traumatic seizures (PTS) are a significant complication from traumatic brain injury (TBI). Adenosine, a major neuroprotective and neuroinhibitory molecule, is important in experimental epilepsy models. Thus, we investigated the adenosine A1 receptor (A1AR) gene and linked it with clinical data extracted for 206 subjects with severe TBI. Tagging SNPs(More)
Post traumatic seizures (PTS) occur frequently after traumatic brain injury (TBI). Since gamma-amino butyric acid (GABA) neurotransmission is central to excitotoxicity and seizure development across multiple models, we investigated how genetic variability for glutamic acid decarboxylase (GAD) influences risk for PTS. Using both a tagging and functional(More)
The biochemical cascades associated with cell death after traumatic brain injury (TBI) involve both pro-survival and pro-apoptotic proteins. We hypothesized that elevated cerebrospinal fluid (CSF) Bcl-2 and cytochrome C (CytoC) levels over time would reflect cellular injury response and predict long-term outcomes after TBI. Cerebrospinal fluid Bcl-2 and(More)
Despite decades of basic and clinical research, treatments to improve outcomes after traumatic brain injury (TBI) are limited. However, based on the recent recognition of the prevalence of mild TBI, and its potential link to neurodegenerative disease, many new and exciting secondary injury mechanisms have been identified and several new therapies are being(More)
Traumatic brain injury features deficits are often ameliorated by dopamine (DA) agonists. We have previously shown deficits in striatal DA neurotransmission using fast scan cyclic voltammetry after controlled cortical impact (CCI) injury that are reversed after daily treatment with the DA uptake inhibitor methylphenidate (MPH). The goal of this study was to(More)
OBJECTIVE To examine the role that gender plays in meeting the medical academic mission by assessing career development, leadership, and research productivity among rehabilitation researchers. DESIGN Prospective, cross-sectional cohort study. SETTING National survey. PARTICIPANTS Three hundred sixty rehabilitation professionals linked to the American(More)
Despite significant advances in the management of head trauma, there remains a lack of pharmacological treatment options for traumatic brain injury (TBI). While progesterone clinical trials have shown promise, corticosteroid trials have failed. The purpose of this study was to (1) characterize endogenous cerebrospinal fluid (CSF) progesterone and cortisol(More)