Amy I Pavone

Learn More
Nonmelanoma skin cancer is the most prevalent cancer in the United States and its incidence is on the rise. These cancers generally arise on sun-exposed areas of the body and the ultraviolet (UV) B spectrum of sunlight has been clearly identified as the major carcinogen responsible for skin cancer development. Besides inducing DNA damage directly, UV(More)
Risk of pancreatic cancer, the fourth deadliest cancer in the United States, is increased by obesity. Calorie restriction (CR) prevents obesity, suppresses carcinogenesis in many models, and reduces serum levels of IGF-1. In the present study, we examined the impact of CR on a model of inflammation-associated pancreatitis and pancreatic dysplasia, with a(More)
Ultraviolet (UV) irradiation is the primary environmental insult responsible for the development of most common skin cancers. To better understand the multiple molecular events that contribute to the development of UV-induced skin cancer, in a first study, serial analysis of gene expression (SAGE) was used to compare the global gene expression profiles of(More)
Cyclooxygenase-2 (COX-2) overexpression is an established factor linking chronic inflammation with metaplastic and neoplastic change in various tissues. We generated transgenic mice (BK5.COX-2) in which elevation of COX-2 and its effectors trigger a metaplasia-dysplasia sequence in exocrine pancreas. Histologic evaluation revealed a chronic(More)
High levels of prostaglandin E2 (PGE2) synthesis resulting from the up-regulation of cyclooxygenase (COX)-2 has been shown to be critical for the development of non-melanoma skin tumors. This effect of PGE2 is likely mediated by one or more of its 4 G-protein coupled membrane receptors, EP1-4. A previous study showed that BK5.EP1 transgenic mice produced(More)
While it has been established that both the constitutive and inducible forms of cyclooxygenase (COX-1 and COX-2, respectively) play important roles in chemical initiation-promotion protocols with phorbol ester tumor promoters, the contribution of these two enzymes to ultraviolet (UV) light-induced skin tumors has not been fully assessed. To better(More)
Prostaglandin E(2) (PGE(2) ) has been shown to promote the development of murine skin tumors. EP1 is 1 of the 4 PGE(2) G-protein-coupled membrane receptors expressed by murine keratinocytes. EP1 mRNA levels were increased ∼2-fold after topical treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA) or exposure to ultraviolet (UV) light, as well as(More)
Exposure of murine skin to tumor-promoting agents such as 12-O-tetradecanoyl-phorbol-13-acetate (TPA) causes up-regulation of cyclooxygenase-2 (COX-2) and increased prostaglandin (PG) synthesis. Pharmacological inhibition of COX-2 significantly reduces skin tumor development. However, we previously demonstrated that K14.COX-2 transgenic (TG) mice that(More)
Interleukin-1 receptor antagonist (IL-1Ra) is involved in many processes, including epidermal inflammation and hyperplasia after irritation or injury. However, the mechanism by which intracellular IL-1Ra (icIL-1Ra) expression is regulated in mouse keratinocytes has not been reported. We found that the CH72 mouse carcinoma cell line constitutively expresses(More)
The up-regulation of the inducible form of cyclooxygenase (COX-2), a central enzyme in the prostaglandin (PG) biosynthetic pathway, occurs in many epithelial tumors and has been associated with tumor cell proliferation and angiogenesis. To better understand the role of COX-2 in skin tumor development, we generated transgenic mice that overexpress COX-2(More)