Learn More
The development of dendritic spines is thought to be crucial for synaptic plasticity. Dendritic spines are retracted upon Eph receptor A4 (EphA4) activation, but the mechanisms that control this process are not well understood. Here we report an important function of cyclin-dependent kinase 5 (Cdk5) in EphA4-dependent spine retraction in mice. We found that(More)
Polarized trafficking of synaptic proteins to axons and dendrites is crucial to neuronal function. Through forward genetic analysis in C. elegans, we identified a cyclin (CYY-1) and a cyclin-dependent Pctaire kinase (PCT-1) necessary for targeting presynaptic components to the axon. Another cyclin-dependent kinase, CDK-5, and its activator p35, act in(More)
Recent linkage studies have identified a significant association of the neuregulin gene with schizophrenia, but how neuregulin is involved in schizophrenia is primarily unknown. Aberrant NMDA receptor functions have been implicated in the pathophysiology of schizophrenia. Therefore, we hypothesize that neuregulin, which is present in glutamatergic synaptic(More)
Homeostatic plasticity is crucial for maintaining neuronal output by counteracting unrestrained changes in synaptic strength. Chronic elevation of synaptic activity by bicuculline reduces the amplitude of miniature excitatory postsynaptic currents (mEPSCs), but the underlying mechanisms of this effect remain unclear. We found that activation of EphA4(More)
Here we describe an important involvement of Cdk5/p35 in regulating the gene expression of acetylcholine receptor (AChR) at the neuromuscular synapse. Cdk5 and p35 were prominently expressed in embryonic muscle, and concentrated at the neuromuscular junction in adulthood. Neuregulin increased the p35-associated Cdk5 kinase activity in the membrane fraction(More)
The participation of ephrins and Eph receptors in guiding motor axons during muscle innervation has been well documented, but little is known about their expression and functional significance in muscle at later developmental stages. Our present study investigates the expression and localization of Eph receptors and ephrins in skeletal muscle. Prominent(More)
Accumulating evidence indicates that cyclin dependent kinase 5 (Cdk5), through phosphorylating a plethora of pre- and postsynaptic proteins, functions as an essential modulator of synaptic transmission. Recent advances in the field of Cdk5 research have not only consolidated the in vivo importance of Cdk5 in neurotransmission but also suggest a pivotal role(More)
The vertebrate neuromuscular junction (NMJ), a peripheral synapse formed between motoneuron and skeletal muscle, is characterized by a protracted postnatal period of maturation and life-long maintenance. In neuromuscular disorders such as congenital myasthenic syndromes (CMSs), disruptions of NMJ maturation and/or maintenance are frequently observed. In(More)
UNLABELLED The expansion of the mammalian cerebral cortex is safeguarded by a concerted balance between amplification and neuronal differentiation of intermediate progenitors (IPs). Nonetheless, the molecular controls governing these processes remain unclear. We found that the scaffold protein Axin is a critical regulator that determines the IP population(More)
Muscle-specific kinase (MuSK) is part of the receptor complex that is involved in the agrin-induced formation of the neuromuscular junction. In the rodent, prominent mRNA expression of MuSK is restricted to skeletal muscle while the expression of agrin can also be detected in brain and certain nonneuronal tissues. The recent identification of Xenopus MuSK(More)