Amy C Rosenzweig

Learn More
Ammonia-oxidizing archaea are ubiquitous in marine and terrestrial environments and now thought to be significant contributors to carbon and nitrogen cycling. The isolation of Candidatus "Nitrosopumilus maritimus" strain SCM1 provided the opportunity for linking its chemolithotrophic physiology with a genomic inventory of the globally distributed archaea.(More)
The Hah1 metallochaperone protein is implicated in copper delivery to the Menkes and Wilson disease proteins. Hah1 and the N-termini of its target proteins belong to a family of metal binding domains characterized by a conserved MT/HCXXC sequence motif. The crystal structure of Hah1 has been determined in the presence of Cu(I), Hg(II), and Cd(II). The 1.8 Å(More)
The P-type ATPases translocate cations across membranes using the energy provided by ATP hydrolysis. CopA from Archaeoglobus fulgidus is a hyperthermophilic ATPase responsible for the cellular export of Cu+ and is a member of the heavy metal P1B-type ATPase subfamily, which includes the related Wilson and Menkes diseases proteins. The Cu+-ATPases are(More)
Cellular systems for handling transition metal ions have been identified, but little is known about the structure and function of the specific trafficking proteins. The 1.8 Å resolution structure of the yeast copper chaperone for superoxide dismutase (yCCS) reveals a protein composed of two domains. The N-terminal domain is very similar to the(More)
Particulate methane monooxygenase (pMMO) is an integral membrane metalloenzyme that catalyses the conversion of methane to methanol. Knowledge of how pMMO performs this extremely challenging chemistry may have an impact on the use of methane as an alternative energy source by facilitating the development of new synthetic catalysts. We have determined the(More)
The success of cisplatin in cancer chemotherapy derives from its ability to crosslink DNA and alter the structure. Most cisplatin-DNA adducts are intrastrand d(GpG) and d(ApG) crosslinks, which unwind and bend the duplex to facilitate the binding of proteins that contain one or more high-mobility group (HMG) domains. When HMG-domain proteins such as HMG1,(More)
The copper chaperone for superoxide dismutase (CCS) activates the eukaryotic antioxidant enzyme copper, zinc superoxide dismutase (SOD1). The 2.9 Å resolution structure of yeast SOD1 complexed with yeast CCS (yCCS) reveals that SOD1 interacts with its metallochaperone to form a complex comprising one monomer of each protein. The heterodimer interface is(More)
The radical S-adenosyl-L-methionine (SAM) enzymes RlmN and Cfr methylate 23S ribosomal RNA, modifying the C2 or C8 position of adenosine 2503. The methyl groups are installed by a two-step sequence involving initial methylation of a conserved Cys residue (RlmN Cys(355)) by SAM. Methyl transfer to the substrate requires reductive cleavage of a second(More)
Copper homeostasis is maintained in part by membrane-bound P(1B)-type ATPases that are found in all organisms and drive the transport of this essential, yet toxic, metal ion across cellular membranes. CopA from Archaeoglobus fulgidus is a hyperthermophilic member of this ATPase subfamily and is homologous to the human Wilson and Menkes disease ATPases. To(More)