Amy C. Larson

Learn More
— Small robots can be beneficial to important applications such as civilian search and rescue and military surveillance, but their limited resources constrain their functionality and performance. To address this, a reconfigurable technique based on field-programmable gate arrays (FPGAs) may be applied, which has the potential for greater functionality and(More)
In this paper we study the performance of multiple robots at a search and retrieval task. The robots have all the same capabilities and perform the same task without any explicit communication. The sensing capabilities of the robots are quite limited, yet the robots succeed at performing the task. We show how the performance is affected by the number of(More)
We present a new terrain classification technique both for effective, autonomous locomotion over natural, unknown terrains and for the qualitative analysis of terrains for exploration and mapping. Our straight-forward approach requires a single camera with little processing of visual information. Specifically, we derived a gait bounce measure from visual(More)
—As part of a massively distributed heterogeneous system, TerminatorBot, a novel, centimeter-scale crawling robot, has been developed to address applications in surveillance, search-and-rescue, and planetary exploration. Its two three-degree of freedom arms, which stow inside the cylindrical body for ballistic deployment and protected transport, comprise a(More)
To explore the effects of different simple communications strategies on performance of robot teams, we have conducted a set of foraging experiments using real robots (the Minnesota Distributed Autonomous Robotic Team). Our experimental results show that more complex communication strategies do not necessarily improve task completion times, but tend to(More)
A custom version of the TerminatorBot is described for core bored inspection during search-and-rescue operations. "Core bored inspection" refers to visual inspection of a void by passing a small camera through an access hole into the void. This is the classic "camera-on-a-stick" approach. Sometimes the access hole occurs naturally. Sometimes a suspected(More)
The costs of developing mobile robot teams can be reduced if they are designed to exploit swarm techniques. In this methodology many simple homogeneous units solve complex tasks through emergent behavior. The challenge lies in selecting an appropriate control strategy for the individual units. Complexity in design costs both money and time, therefore a(More)
We present a new terrain classification technique both for effective, autonomous locomotion over rough, unknown terrains and for the qualitative analysis of terrains for exploration and mapping. Our approach requires a single camera with little processing of visual information. Specifically, we derived a gait bounce measure from visual servoing errors that(More)
Limbs are an attractive approach to certain niche robotic applications, such as urban search and rescue, that require both small size and the ability to locomote through highly rubbled terrain. Unfortunately, a large number of degrees of freedom implies there is a large space of non- optimal locomotion trajectories (gaits), making gait adaptation critical.(More)
A novel, centimeter-scale crawling robot has been developed to address applications in surveillance, search-and-rescue, and planetary exploration. This places constraints on size and durability that minimizes the mechanism. As a result, a dual-use design employing two arms for both manipulation and locomotion was conceived. In a complementary fashion, this(More)