Learn More
Late (L) domains containing the highly conserved sequence PPXY were first described for retroviruses, and later research confirmed their conservation and importance for efficient budding of several negative-stranded RNA viruses. Rabies virus (RV), a member of the Rhabdoviridae family, contains the sequence PPEY (amino acids 35 to 38) within the N terminus(More)
Several rabies virus (RV) vaccine strains containing an aspartic acid (Asp) or glutamic acid (Glu) instead of an arginine (Arg) at position 333 of the RV glycoprotein (G) are apathogenic for immunocompetent mice even after intracranial inoculation. However, we previously showed that the nonpathogenic phenotype of the highly attenuated RV strain SPBNGA,(More)
The search for a safe and efficacious vaccine for Ebola virus continues, as no current vaccine candidate is nearing licensure. We have developed (i) replication-competent, (ii) replication-deficient, and (iii) chemically inactivated rabies virus (RABV) vaccines expressing Zaire Ebola virus (ZEBOV) glycoprotein (GP) by a reverse genetics system based on the(More)
Rabies virus, the prototypical neurotropic virus, causes one of the most lethal zoonotic diseases. According to official estimates, over 55,000 people die of the disease annually, but this is probably a severe underestimation. A combination of virulence factors enables the virus to enter neurons at peripheral sites and travel through the spinal cord to the(More)
Rabies vaccines based on live attenuated rabies viruses or recombinant pox viruses expressing the rabies virus (RV) glycoprotein (G) hold the greatest promise of safety and efficacy, particularly for oral immunization of wildlife. However, while these vaccines induce protective immunity in foxes, they are less effective in other animals, and safety concerns(More)
Although current postexposure prophylaxis rabies virus (RV) vaccines are effective, approximately 40,000-70,000 rabies-related deaths are reported annually worldwide. The development of effective formulations requiring only 1-2 applications would significantly reduce mortality. We assessed in mice and nonhuman primates the efficacy of replication-deficient(More)
The type of immune response induced by a vaccine is a critical factor that determines its effectiveness in preventing infection or disease. Inactivated and live rabies virus (RV) vaccine strains elicit an IgG1-biased and IgG1/IgG2a-balanced antibody response, respectively. However, IgG2a antibodies are potent inducers of anti-viral effector functions, and(More)
We have previously described the generation of a novel Ebola virus (EBOV) vaccine platform based on (a) replication-competent rabies virus (RABV), (b) replication-deficient RABV, or (c) chemically inactivated RABV expressing EBOV glycoprotein (GP). Mouse studies demonstrated safety, immunogenicity, and protective efficacy of these live or inactivated(More)
Highly attenuated rabies virus (RV) vaccine vectors were evaluated for their ability to protect against highly pathogenic SIV(mac251) challenge. Mamu-A*01 negative rhesus macaques were immunized in groups of four with either: RV expressing SIV(mac239)-GagPol, a combination of RV expressing SIV(mac239)-Env and RV expressing SIV(mac239)-GagPol, or with empty(More)
We are developing inactivated and live-attenuated rabies virus (RABV) vaccines expressing Ebola virus (EBOV) glycoprotein for use in humans and endangered wildlife, respectively. Here, we further characterize the pathogenesis of the live-attenuated RABV/EBOV vaccine candidates in mice in an effort to define their growth properties and potential for safety.(More)