Learn More
The subclass of cysteine proteases termed lysosomal cathepsins has long been thought to be primarily involved in end-stage protein breakdown within lysosomal compartments. Furthermore, few specific protein substrates for these proteases have been identified. We show here that cathepsin L functions in the regulation of cell cycle progression through(More)
Cysteine proteases of Plasmodium falciparum are required for survival of the malaria parasite, yet their specific cellular functions remain unclear. We used a chemical proteomic screen with a small-molecule probe to characterize the predominant cysteine proteases throughout the parasite life cycle. Only one protease, falcipain 1, was active during the(More)
A novel human connexin gene (GJA11) was cloned from a genomic library. The open reading frame encoded a hypothetical protein of 294 amino acid residues with a predicted molecular mass of 31,933, hence referred to as connexin-31.9 (Cx31.9) or alpha 11 connexin. A clone in GenBank containing the Cx31.9 gene localized to chromosome 17q21.2. Northern analysis(More)
Disruption of the connexin alpha 3 (Cx46) gene (alpha 3 (-/-)) in mice results in severe cataracts within the nuclear portion of the lens. These cataracts are associated with proteolytic processing of the abundant lens protein gamma-crystallin, leading to its aggregation and subsequent opacification of the lens. The general cysteine protease inhibitor,(More)
A mechanism is described whereby one and the same gene can encode both a receptor protein as well as its specific ligand. Generation of this receptor-ligand partnership is effected by proteolytic cleavage within a specific module located in a membrane resident protein. It is postulated here that the "SEA" module, found in a number of heavily O-linked(More)
Connexin alpha1Cx43 has previously been shown to bind to the PDZ domain-containing protein ZO-1. The similarity of the carboxyl termini of this connexin and the lens fiber connexins alpha3Cx46 and alpha8Cx50 suggested that these connexins may also interact with ZO-1. ZO-1 was shown to be highly expressed in mouse lenses. Colocalization of ZO-1 with(More)
Tumors develop through successive stages characterized by changes in gene expression and protein function. Gene expression profiling of pancreatic islet tumors in a mouse model of cancer revealed upregulation of cathepsin cysteine proteases. Cathepsin activity was assessed using chemical probes allowing biochemical and in vivo imaging, revealing increased(More)
With the availability of complete genome sequences, emphasis has shifted toward the understanding of protein function. We have developed a functional proteomic methodology that makes use of chemically reactive fluorescent probes to profile and identify enzymes in complex mixtures by virtue of their catalytic activity. This methodology allows a comparison of(More)
Classifying proteins into functionally distinct families based only on primary sequence information remains a difficult task. We describe here a method to generate a large data set of small molecule affinity fingerprints for a group of closely related enzymes, the papain family of cysteine proteases. Binding data was generated for a library of inhibitors(More)
Citrobacter rodentium is a bacterial pathogen that causes a murine infectious colitis equivalent to enterohemorrhagic Escherichia coli infection in humans. Colonic luminal fluid from C. rodentium-infected mice, but not from sham-infected mice, contains active serine proteinases that can activate proteinase-activated receptor-2 (PAR2). We have identified(More)