Amol V. Janorkar

Learn More
Fatty liver disease is a problem of growing clinical importance due to its association with the increasingly prevalent conditions of obesity and diabetes. While steatosis represents a reversible state of excess intrahepatic lipid, it is also associated with increased susceptibility to oxidative and cytokine stresses and progression to irreversible hepatic(More)
Tissue engineering applications could benefit from simultaneous release of growth factors, signaling molecules, and antibiotics to obtain optimal healing of tissues. Elastin-like polypeptides (ELPs) are genetically engineered polymers that possess good biocompatibility, are biodegradable, and exhibit mechanical properties similar to natural elastin. In(More)
OBJECTIVES Collagen and elastin are two key structural proteins found in the extra-cellular matrices (ECMs) of most tissues, yet very little is known about the response of bone cells to elastin or its derivatives. Recently, we have designed and characterized a novel class of ECM-based composite scaffolds with collagen and a genetically engineered polymer,(More)
Collagen-based biomaterials suffer from poor mechanical properties and rapid degradation. Elastin-like polypeptides (ELPs) possess good biocompatibility and have unique solution properties that allow them to coacervate above a critical temperature. The objective of this research was to prepare a series of freeze dried ELP-collagen composite scaffolds as a(More)
Both tissue engineering and biological science will benefit from improved methods to control the morphology, differentiated state, and function of primary cells. In this paper, we show that surface modification of tissue culture polystyrene (TCPS) with chemically derivatized elastin-like polypeptides (ELPs) enables control over the in vitro morphology and(More)
Non-alcoholic fatty liver disease (NAFLD) is a family of liver diseases associated with obesity. Initial stage of NAFLD is characterized by a fatty liver, referred to as steatosis, which progresses in some individuals to non-alcoholic steatohepatitis (NASH) and liver failure. In order to study and treat the many liver diseases such as NAFLD, an improved in(More)
In order to effectively treat obesity, it must be better understood at the cellular level with respect to metabolic state and environmental stress. However, current two-dimensional (2D) in vitro cell culture methods do not represent the in vivo adipose tissue appropriately due to the absence of complex architecture and cellular signaling. Conversely, 3D in(More)
Though two-dimensional systems have yielded some success in deriving morphological and functional markers of hepatocyte culture, they largely fail to capture the three-dimensional organization, long-term viability, and functionality of the hepatic tissue. We have engineered a system for inducing self-assembly of model H35 rat hepatoma spheroids using a(More)
Ionic elastin-like polypeptide (ELP) conjugates are a new class of biocompatible, self-assembling biomaterials. ELPs composed of the repeat unit (GVGVP)(n) are derived from the primary sequence of mammalian elastin and produced in Escherichia coli. These biopolymers exhibit an inverse transition temperature that renders them extremely useful for(More)
HUMAN MESENCHYMAL STEM CELLS (HMSCS) HAVE THREE KEY PROPERTIES THAT MAKE THEM DESIRABLE FOR STEM CELL THERAPEUTICS: differentiation capacity, trophic activity, and ability to self-renew. However, current separation techniques are inefficient, time consuming, expensive, and, in some cases, alter hMSCs cellular function and viability. Dielectrophoresis (DEP)(More)