Amnon Albeck

Learn More
In Parkinson's disease (PD) dopaminergic neurons in the substantia nigra (SN) become dysfunctional and many ultimately die. We report that the tellurium immunomodulating compound ammonium trichloro(dioxoethylene-O,O'-)tellurate (AS101) protects dopaminergic neurons and improves motor function in animal models of PD. It is effective when administered(More)
New cyclic RGD peptide-anticancer agent conjugates, with different chemical functionalities attached to the parent peptide were synthesized in order to evaluate their biological activities and to provide a comparative study of their drug release profiles. The Integrin binding c(RGDfK) penta-peptide was used for the synthesis of Camptothecin (CPT) carbamate(More)
Bi-nuclear amino acid platforms loaded with various drugs for conjugation to a peptide carrier were synthesized using simple and convenient orthogonally protective solid-phase organic synthesis (SPOS). Each arm of the platform carries a different anticancer agent linked through the same or different functional group, providing discrete chemo- and(More)
The organotellurium compound, trichloro(dioxoethylene-O,O') tellurate (AS101) has been shown previously to exert diverse biologic activities both in vitro and in vivo. This compound was recently found to react with thiols and to catalyze their oxidation. This property of AS101 raises the possibility that it may serve as a cysteine protease inhibitor. In the(More)
The immunomodulator amonium trichloro[1,2-ethanediolato-O,O'] tellurate (AS101), a nontoxic tellurium(IV) compound, exhibited antitumoral activity in several preclinical and clinical studies. In this study, we investigated the synergism between thiols and AS101 in its antitumoral activity on Jurkat cells. AS101 induced a G2/M arrest in the cell cycle after(More)
Octa-O-bis-(R,R)-Tartarate Ditellurane (SAS) is a new Te(IV) compound, comprised of two tellurium atoms, each liganded by four oxygen atoms from two carboxylates and two alkoxides of two tartaric acids. Unlike many other Te(IV) compounds, SAS was highly stable in aqueous solution. It interacted with thiols to form an unstable Te(SR)(4) product. The product(More)
Various mechanisms for the reversible formation of a covalent tetrahedral complex (TC) between papain and peptidyl aldehyde inhibitors were simulated by DFT calculations, applying the quantum mechanical/self consistent reaction field (virtual solvent) [QM/SCRF(VS)] approach. Only one mechanism correlates with the experimental kinetic data. The His-Cys(More)
The transformation of a weak hydrogen bond in the free enzyme into a low-barrier hydrogen bond (LBHB) in the tetrahedral intermediate has been suggested as an important factor facilitating catalysis in serine proteases. In this work, we examine the structure of the H-bond in the Asp102-His57 diad of serine proteases in the free enzyme and in a covalent(More)
Rhomboid proteases are a ubiquitous family of intramembrane serine proteases in prokaryotic and eukaryotic organisms that cleave membrane proteins in their transmembrane region. Their catalytic activity is centered at a His-Ser catalytic dyad. We applied molecular dynamics and quantum mechanics calculations in order to clarify the protonation state of the(More)
We introduce an enzyme mechanism-based method (EMBM) aimed at rational design of chemical sites (CS) of reaction coordinate analog inhibitors. The energy of valence reorganization of CS, caused by the formation of the enzyme-inhibitor covalent complex, is accounted for by new covalent descriptors W1 and W2. We considered CS fragments with a carbonyl(More)