Learn More
In Parkinson's disease (PD) dopaminergic neurons in the substantia nigra (SN) become dysfunctional and many ultimately die. We report that the tellurium immunomodulating compound ammonium trichloro(dioxoethylene-O,O'-)tellurate (AS101) protects dopaminergic neurons and improves motor function in animal models of PD. It is effective when administered(More)
The immunomodulator amonium trichloro[1,2-ethanediolato-O,O'] tellurate (AS101), a nontoxic tellurium(IV) compound, exhibited antitumoral activity in several preclinical and clinical studies. In this study, we investigated the synergism between thiols and AS101 in its antitumoral activity on Jurkat cells. AS101 induced a G2/M arrest in the cell cycle after(More)
Octa-O-bis-(R,R)-Tartarate Ditellurane (SAS) is a new Te(IV) compound, comprised of two tellurium atoms, each liganded by four oxygen atoms from two carboxylates and two alkoxides of two tartaric acids. Unlike many other Te(IV) compounds, SAS was highly stable in aqueous solution. It interacted with thiols to form an unstable Te(SR)(4) product. The product(More)
The organotellurium compound, trichloro(dioxoethylene-O,O') tellurate (AS101) has been shown previously to exert diverse biologic activities both in vitro and in vivo. This compound was recently found to react with thiols and to catalyze their oxidation. This property of AS101 raises the possibility that it may serve as a cysteine protease inhibitor. In the(More)
Various mechanisms for the reversible formation of a covalent tetrahedral complex (TC) between papain and peptidyl aldehyde inhibitors were simulated by DFT calculations, applying the quantum mechanical/self consistent reaction field (virtual solvent) [QM/SCRF(VS)] approach. Only one mechanism correlates with the experimental kinetic data. The His-Cys(More)
The transformation of a weak hydrogen bond in the free enzyme into a low-barrier hydrogen bond (LBHB) in the tetrahedral intermediate has been suggested as an important factor facilitating catalysis in serine proteases. In this work, we examine the structure of the H-bond in the Asp102-His57 diad of serine proteases in the free enzyme and in a covalent(More)
A central mechanistic paradigm of cysteine proteases is that the His-Cys catalytic diad forms an ion-pair NH(+)/S(-) already in the catalytically active free enzyme. Most molecular modeling studies of cysteine proteases refer to this paradigm as their starting point. Nevertheless, several recent kinetics and X-ray crystallography studies of viral and(More)
We introduce an enzyme mechanism-based method (EMBM) aimed at rational design of chemical sites (CS) of reaction coordinate analog inhibitors. The energy of valence reorganization of CS, caused by the formation of the enzyme-inhibitor covalent complex, is accounted for by new covalent descriptors W1 and W2. We considered CS fragments with a carbonyl(More)
What is the driving force that alters the catalytic function of His57 in serine proteases between general base and general acid in each step along the enzymatic reaction? The stable tetrahedral complexes (TC) of chymotrypsin with trifluoromethyl ketone transition state analogue inhibitors are topologically similar to the catalytic transition state.(More)
The pKa of the catalytic His57 N(epsilon)H in the tetrahedral complex (TC) of chymotrypsin with trifluoromethyl ketone inhibitors is 4-5 units higher relative to the free enzyme (FE). Such stable TC's, formed with transition state (TS) analog inhibitors, are topologically similar to the catalytic TS. Thus, analysis of this pKa shift may shed light on the(More)