Learn More
Multiple centrosomes in tumor cells create the potential for multipolar divisions that can lead to aneuploidy and cell death. Nevertheless, many cancer cells successfully divide because of mechanisms that suppress multipolar mitoses. A genome-wide RNAi screen in Drosophila S2 cells and a secondary analysis in cancer cells defined mechanisms that suppress(More)
The response of cells to forces is essential for tissue morphogenesis and homeostasis. This response has been extensively investigated in interphase cells, but it remains unclear how forces affect dividing cells. We used a combination of micro-manipulation tools on human dividing cells to address the role of physical parameters of the micro-environment in(More)
In tissues, cell microenvironment geometry and mechanics strongly impact on cell physiology. Surface micropatterning allows the control of geometry while deformable substrates of tunable stiffness are well suited for the control of the mechanics. We developed a new method to micropattern extracellular matrix proteins on poly-acrylamide gels in order to(More)
The original micropatterning technique on gold, although very efficient, is not accessible to most biology labs and is not compatible with their techniques for image acquisition. Other solutions have been developed on silanized glass coverslips. These methods are still hardly accessible to biology labs and do not provide sufficient reproducibility to become(More)
The described protocol is a simple method to make protein micropatterns with a micron size resolution. It can be applied to control cell shape and adhesive geometry, and also for any other assay requiring protein patterning. It is based on the use of a photomask with microfeatures to locally irradiate with deep UV light (below 200 nm) an antifouling(More)
We present a simple and environmentally friendly process for cell patterning on glass covered with an ultrathin layer of poly-l-lysine-grafted-polyethylene glycol (PLL-g-PEG) by exposure to deep UV light. The patterned substrates are stable for months in the lab atmosphere before incubation with proteins. Incubation with proteins resulted in well defined(More)
Novel ester-functionalized polypyrrole-silica nanocomposite particles were prepared by oxidative copolymerization of pyrrole and N-succinimidyl ester pyrrole (50/50% initial concentrations), using FeCl3 in the presence of ultrafine silica nanoparticles (20 nm diameter). The N-succinimidyl ester pyrrole monomer was prepared in aqueous solution using(More)
We introduce a simple and effective method to tailor the wetting and adhesion properties of thiolene-based microfluidic devices. This one-step lithographic scheme combines most of the advantages offered by the current methods employed to pattern microchannels: (i) the channel walls can be modified in situ or ex situ, (ii) their wettability can be varied in(More)
Light-induced molecular adsorption of proteins (LIMAP) allows for quantitative sub-micrometer-resolution printing of multiple biomolecules. Surface-bound gradients are patterned within minutes over an entire glass cover-slip. LIMAP is used to perform selective immuno-assays, to dynamically control the adhesion of individual cells, and to achieve(More)
First hierarchical titanium phosphate (TiPO) materials with multiple porosities of different lengths (meso-macroporous and meso-macro-macroporous) were synthesized by the self-formation process. The further tuning of the porous hierarchy by using the poly(ethylene oxide) surfactant technique was demonstrated. The macroporous structure (50-160 nm in size) of(More)