Learn More
During cell division, spindle microtubules attach to chromosomes through kinetochores, protein complexes on the chromosome. The central question is how microtubules find kinetochores. According to the pioneering idea termed search-and-capture, numerous microtubules grow from a centrosome in all directions and by chance capture kinetochores. The efficiency(More)
How tissue shape emerges from the collective mechanical properties and behavior of individual cells is not understood. We combine experiment and theory to study this problem in the developing wing epithelium of Drosophila. At pupal stages, the wing-hinge contraction contributes to anisotropic tissue flows that reshape the wing blade. Here, we quantitatively(More)
Intracellular transport is a complex interplay of ballistic transport along filaments and of diffusive motion, reliably delivering material and allowing for cell differentiation, migration, and proliferation. The diffusive regime, including subdiffusive, Brownian, and superdiffusive motion, is of particular interest for inferring information about the(More)
The tailbud is the posterior leading edge of the growing vertebrate embryo and consists of motile progenitors of the axial skeleton, musculature and spinal cord. We measure the 3D cell flow field of the zebrafish tailbud and identify changes in tissue fluidity revealed by reductions in the coherence of cell motion without alteration of cell velocities. We(More)
During embryonic development and tissue homeostasis, cells produce and remodel the extracellular matrix (ECM). The ECM maintains tissue integrity and can serve as a substrate for cell migration. Integrin α5 (Itgα5) and αV (ItgαV) are the α subunits of the integrins most responsible for both cell adhesion to the ECM protein fibronectin (FN) and FN matrix(More)
In cell biology, time-resolved fluctuation analysis of tracer particles has recently gained great importance. One such method is the local mean-square displacement (MSD) analysis, which provides an estimate of two parameters as functions of time: the exponent of growth of the MSD and the diffusion coefficient. Here, we study the joint and marginal(More)
INTRODUCTION Vertebrate axis elongation intertwines cell migration, cell differentiation and tissue patterning within a structure called the tailbud. The tailbud is the posterior end of the growing trunk and tail and contains both neural and mesodermal anlagen (Griffith et al. Genetic and fate-mapping studies demonstrate the existence of a population of(More)
  • 1