Learn More
Disabled-1 regulates laminar organization in the developing mammalian brain. Although mutation of the disabled-1 gene in scrambler mice results in abnormalities in neuronal positioning, migratory behavior linked to Disabled-1 signaling is not completely understood. Here we show that newborn neurons in the scrambler cortex remain attached to the process of(More)
Although the basic principles of neocortical development have been known for quite some time, it is only recently that our understanding of the molecular mechanisms that are involved has improved. Such understanding has been facilitated by genetic approaches that have identified key proteins involved in neocortical development, which have been placed into(More)
BACKGROUND The p35-Cdk5 kinase has been implicated in a variety of functions in the central nervous system (CNS), including axon outgrowth, axon guidance, fasciculation, and neuronal migration during cortical development. In p35(-/-) mice, embryonic cortical neurons are unable to migrate past their predecessors, leading to an inversion of cortical layers in(More)
Several genes essential for neocortical layering have been identified in recent years, but their precise roles in this process remain to be elucidated. Mice deficient in p35--an activator of cyclin-dependent kinase 5 (Cdk5)--are characterized by a neocortex that has inverted layering. To decipher the physiological mechanisms that underlie this defect, we(More)
The cyclin-dependent kinase 5 (Cdk5) plays an important role in the proper establishment of neocortical layers. Over the past several years, key molecular targets of Cdk5 have been identified that show intriguing connections to the adhesional and cytoskeletal components of cell movement. This molecular knowledge about Cdk5 signaling has begun to translate(More)
  • 1