Learn More
— Differential evolution (DE) is well known as a simple and efficient scheme for global optimization over continuous spaces. It has reportedly outperformed a few evolutionary algorithms (EAs) and other search heuristics like the particle swarm optimization (PSO) when tested over both benchmark and real-world problems. DE, however, is not completely free(More)
Since the beginning of the nineteenth century, a significant evolution in optimization theory has been noticed. Classical linear programming and traditional non-linear optimization techniques such as Lagrange's Multiplier, Bellman's principle and Pontyagrin's principle were prevalent until this century. Unfortunately, these derivative based optimization(More)
—Differential evolution (DE) has emerged as one of the fast, robust, and efficient global search heuristics of current interest. This paper describes an application of DE to the automatic clustering of large unlabeled data sets. In contrast to most of the existing clustering techniques, the proposed algorithm requires no prior knowledge of the data to be(More)
Differential evolution (DE) is well known as a simple and efficient scheme for global optimization over continuous spaces. In this paper we present two new, improved variants of DE. Performance comparisons of the two proposed methods are provided against (a) the original DE, (b) the canonical particle swarm optimization (PSO), and (c) two PSO-variants. The(More)
—This paper presents a fuzzy relational approach to human emotion recognition from facial expressions and its control. The proposed scheme uses external stimulus to excite specific emotions in human subjects whose facial expressions are analyzed by segmenting and localizing the individual frames into regions of interest. Selected facial features such as eye(More)