Learn More
L6 myoblasts stably transfected with a GLUT4 cDNA harboring an exofacial myc epitope tag (L6-GLUT4myc myoblasts) were used to study the role of protein kinase B alpha (PKBalpha)/Akt1 in the insulin-induced translocation of GLUT4 to the cell surface. Surface GLUT4myc was detected by immunofluorescent labeling of the myc epitope in nonpermeabilized cells.(More)
Aims/hypothesis. A natural cofactor of mitochondrial dehydrogenase complexes and a potent antioxidant, α-lipoic acid improves glucose metabolism in people with Type II (non-insulin-dependent) diabetes mellitus and in animal models of diabetes. In this study we investigated the cellular mechanism of action of α-lipoic acid in 3T3-L1 adipocytes.¶Methods. We(More)
The cofactor of mitochondrial dehydrogenase complexes and potent antioxidant alpha-lipoic acid has been shown to lower blood glucose in diabetic animals. alpha-Lipoic acid enhances glucose uptake and GLUT1 and GLUT4 translocation in 3T3-L1 adipocytes and L6 myotubes, mimicking insulin action. In both cell types, insulin-stimulated glucose uptake is reduced(More)
We report a rapid and sensitive colorimetric approach to quantitate the amount of glucose transporters exposed at the surface of intact cells, using L6 muscle cells expressing GLUT4 containing an exofacial myc epitope. Unstimulated cells exposed to the surface 5 fmol GLUT4myc per mg protein. This value increased to 10 fmol/mg protein in response to insulin(More)
The sodium-potassium-activated adenosinetriphosphatase (Na(+)-K(+)-ATPase; Na(+)-K+ pump) is a ubiquitous plasma membrane enzyme that catalyzes the movement of K+ into cells in exchange for Na+. In addition, it provides the driving force for the transport of other solutes, notably amino acids, sugar, and phosphate. The regulation of Na(+)-K(+)-ATPase in(More)
Insulin-dependent phosphorylation of Akt target AS160 is required for GLUT4 translocation. Insulin and platelet-derived growth factor (PDGF) (Akt activators) or activation of conventional/novel (c/n) protein kinase C (PKC) and 5' AMP-activated protein kinase (AMPK) all promote a rise in membrane GLUT4 in skeletal muscle and cultured cells. However, the(More)
Glucose entry into muscle cells is precisely regulated by insulin, through recruitment of GLUT4 (glucose transporter-4) to the membrane of muscle and fat cells. Work done over more than two decades has contributed to mapping the insulin signalling and GLUT4 vesicle trafficking events underpinning this response. In spite of this intensive scientific(More)
We examined the temporal reorganization of actin microfilaments by insulin and its participation in the localization of signaling molecules and glucose transporters in L6 myotubes expressing myc-tagged glucose transporter 4 (GLUT4myc). Scanning electron microscopy revealed a dynamic distortion of the dorsal cell surface (membrane ruffles) upon insulin(More)
Glucagon-like peptide-2 (GLP-2) promotes the expansion of the intestinal epithelium through stimulation of the GLP-2 receptor, a recently identified member of the glucagon-secretin G protein-coupled receptor superfamily. Although activation of G protein-coupled receptors may lead to stimulation of cell growth, the mechanisms transducing the GLP-2 signal to(More)
The intracellular traffic of the glucose transporter 4 (GLUT4) in muscle cells remains largely unexplored. Here we make use of L6 myoblasts stably expressing GLUT4 with an exofacially directed Myc-tag (GLUT4myc) to determine the exocytic and endocytic rates of the transporter. Insulin caused a rapid (t(12) = 4 min) gain, whereas hyperosmolarity (0.45 m(More)