Amir Sanati Nezhad

Learn More
Biomechanical and mathematical modeling of plant developmental processes requires quantitative information about the structural and mechanical properties of living cells, tissues and cellular components. A crucial mechanical property of plant cells is the mechanical stiffness or Young's modulus of its cell wall. Measuring this property in situ at single(More)
A hallmark of tip-growing cells such as pollen tubes and fungal hyphae is their oscillatory growth dynamics. The multiple aspects of this behavior have been studied to identify the regulatory mechanisms that drive the growth in walled cells. However, the limited temporal and spatial resolution of data acquisition has hitherto prevented more detailed(More)
There is a growing interest to develop microfluidic bioreactors and organ-on-chip platforms with integrated sensors to monitor their physicochemical properties and to maintain a well-controlled microenvironment for cultured organoids. Conventional sensing devices cannot be easily integrated with microfluidic organ-on-chip systems with low-volume bioreactors(More)
Microcontact printing (μCP) of proteins is widely used for biosensors and cell biology but is constrained to printing proteins adsorbed to a low free energy, hydrophobic surface to a high free energy, hydrophilic surface. This strongly limits μCP as harsh chemical treatments are required to form a high energy surface. Here, we introduce humidified μCP(More)
A lab-on-a-chip device with a knot shaped microfluidic network is presented to enable trapping of single pollen grains at the entrances of a series of microchannels. This set-up serves to create identical growth conditions for serially arranged tip growing plant cells such as pollen tubes. The design consists of an inlet to introduce the pollen suspension(More)
The study of cancer growth mechanisms and the determination of the efficacy of experimental therapeutics are usually performed in 2D cell culture models. However, these models are incapable of mimicking complex interactions between cancer cells and the environment. With the advent of microfluidic technologies, the combination of multiple cell cultures with(More)
Pollen tube, the fastest tip growing plant cell, plays essential role in life cycle of flowering plants. It is extremely sensitive to external cues and this makes it as a suitable cellular model for characterizing the cell response to the influence of various signals involved in cellular growth metabolism. For in-vitro study of pollen tube growth, it is(More)
Development of predictive multi-organ models before implementing costly clinical trials is central for screening the toxicity, efficacy, and side effects of new therapeutic agents. Despite significant efforts that have been recently made to develop biomimetic in vitro tissue models, the clinical application of such platforms is still far from reality.(More)
  • 1