Amir Rafati

Learn More
Errors due to sensor bias are often present in sensor data and can reduce the tracking accuracy and stability of multi-sensor systems. The other practical problem is that the target data reported by the sensors are usually not time-coincident or synchronous due to the different data. This paper deals with these problems and presents a new algorithm for(More)
In this paper, first an enhanced NeuroFuzzy method for modeling nonlinear system is presented. In this method we use EM algorithm for identification of local models, which gain us model mismatch covariance. The achieved model can be stated in state space model as a linear time-varying system. As the noise and model mismatch covariance is known, Kalman(More)
In this paper, first an enhanced NeuroFuzzy method for modeling nonlinear system is presented. In this method we use EM algorithm for identification of local models, which gain us model mismatch covariance. The achieved model can be stated in state space model as a linear time-varying system. As the noise and model mismatch covariace is known, Kalman filter(More)
  • 1