Amir Nourhani

  • Citations Per Year
Learn More
Prominent fluctuations, heterogeneity, and cooperativity dominate the dynamics of the cytoskeleton as well as the dynamics of the cellular collective. Such systems are out of equilibrium, disordered, and remain poorly understood. To explain these findings, we consider a unifying mechanistic rubric that imagines these systems as comprising phases of soft(More)
Neither a purely deterministic rotary nanomotor nor a purely orientational diffuser exhibits long-term translational motion, but coupling rotation to orientational diffusion yields translational diffusion. We demonstrate that this effective translational diffusion can easily dominate the ordinary thermal translational diffusion for experimentally relevant(More)
Selective actuation of a single microswimmer from within a diverse group would be a first step toward collaborative guided action by a group of swimmers. Here we describe a new class of microswimmer that accomplishes this goal. Our swimmer design overcomes the commonly-held design paradigm that microswimmers must use non-reciprocal motion to achieve(More)
Within a unified formulation-encompassing self-electrophoresis, self-diffusiophoresis, and self-thermophoresis-we provide a simple integral kernel transforming the relevant surface flux to particle velocity for any spheroid with axisymmetric surface activity and uniform phoretic mobility. Appropriate scaling of the speed allows a dimensionless measure of(More)
Ingenious suggestions continue to be made for separation of racemic mixtures according to the inert structural chirality of the constituents. Recently discovered self-motile micro- or nanoparticles express dynamical chirality, i.e., that which originates in motion, not structure. Here, we predict how dynamically chiral objects, with overdamped dynamics in a(More)
Acoustic actuation of bioinspired microswimmers is experimentally demonstrated. Microswimmers are fabricated in situ in a microchannel. Upon acoustic excitation, the flagellum of the microswimmer oscillates, which in turn generates linear or rotary movement depending on the swimmer design. The speed of these bioinspired microswimmers is tuned by adjusting(More)
We have demonstrated in situ fabricated and acoustically actuated microrotors. A polymeric microrotor with predefined oscillating sharp-edge structures is fabricated in situ by applying a patterned UV light to polymerize a photocrosslinkable polyethylene glycol solution inside a microchannel around a polydimethylsiloxane axle. To actuate the microrotors by(More)
We experimentally investigated the self-assembly of chemically active colloidal Janus spheres into dimers. The trans-dimer conformation, in which the two active sites are oriented roughly in opposite directions and the particles are osculated at their equators, becomes dominant as the hydrogen peroxide fuel concentration increases. Our observations suggest(More)
We extend the kinematic matrix ("kinematrix") formalism [Phys. Rev. E 89, 062304 (2014)], which via simple matrix algebra accesses ensemble properties of self-propellers influenced by uncorrelated noise, to treat Gaussian correlated noises. This extension brings into reach many real-world biological and biomimetic self-propellers for which inertia is(More)
Nanomotors convert chemical energy into mechanical motion. For a given motor type, the underlying chemical reaction that enables motility is typically well known, but the detailed, quantitative mechanism by which this reaction breaks symmetry and converts chemical energy to mechanical motion is often less clear, since it is difficult experimentally to(More)