Learn More
Aggressive technology scaling provides designers with an ever increasing budget of cheaper and faster transistors. Unfortunately, this trend is accompanied by a decline in individual device reliability as transistors become increasingly susceptible to soft errors. We are quickly approaching a new era where resilience to soft errors is no longer a luxury(More)
Extreme technology integration in the sub-micron regime comes with a rapid rise in heat dissipation and power density for modern processors. Dynamic voltage scaling is a widely used technique to tackle this problem when high performance is not the main concern. However, the minimum achievable supply voltage for the processor is often bounded by the large(More)
Technology scaling has delivered on its promises of increasing device density on a single chip. However, the voltage scaling trend has failed to keep up, introducing tight power constraints on manufactured parts. In such a scenario, there is a need to incorporate energy-efficient processing resources that can enable more computation within the same power(More)
Aggressive technology scaling to 45nm and below introduces serious reliability challenges to the design of microprocessors. Large SRAM structures used for caches are particularly sensitive to process variation due to their high density and organization. Designers typically over-provision caches with additional resources to overcome the hard-faults. However,(More)
Scaling of CMOS feature size has long been a source of dramatic performance gains. However, the reduction in voltage levels has not been able to match this rate of scaling, leading to increasing operating temperatures and current densities. Given that most wearout mechanisms that plague semiconductor devices are highly dependent on these parameters,(More)
Extreme technology integration in the sub-micron regime comes with a rapid rise in heat dissipation and power density for modern processors. Dynamic voltage scaling is a widely used technique to tackle this problem when high performance is not needed. However, the minimum achievable supply voltage is often bounded by SRAM cells since they fail at a faster(More)
As manycores use dynamic energy ever more efficiently, static power consumption becomes a major concern. In particular, in a large manycore running at a low voltage, leakage in on-chip memory modules contributes substantially to the chip's power draw. This is unfortunate, given that, intuitively, the large multi-level cache hierarchy of a manycore is likely(More)
EDRAM cells require periodic refresh, which ends up consuming substantial energy for large last-level caches. In practice, it is well known that different eDRAM cells can exhibit very different charge-retention properties. Unfortunately, current systems pessimistically assume worst-case retention times, and end up refreshing all the cells at a(More)
CMOS scaling has long been a source of dramatic performance gains. However, semiconductor feature size reduction has resulted in increasing levels of operating temperatures and current densities. Given that most wearout mechanisms are highly dependent on these parameters, significantly higher failure rates are projected for future technology generations.(More)
Single-thread performance, reliability and power efficiency are critical design challenges of future multicore systems. Although point solutions have been proposed to address these issues, a more fundamental change to the fabric of multicore systems is necessary to seamlessly combat these challenges. Towards this end, this paper proposes Core Genesis, a(More)