Amin A. Nomeir

Learn More
Time-dependent inhibition (TDI) of cytochrome P450 (P450) enzymes caused by new molecular entities (NMEs) is of concern because such compounds can be responsible for clinically relevant drug-drug interactions (DDI). Although the biochemistry underlying mechanism-based inactivation (MBI) of P450 enzymes has been generally understood for several years,(More)
We have been developing a series of nonpeptidic, small molecule farnesyl protein transferase inhibitors that share a common tricyclic nucleus and compete with peptide/protein substrates for binding to farnesyl protein transferase. Here, we report on pharmacological and in vivo studies with SCH 66336, a lead compound in this structural class. SCH 66336(More)
Cyclin-dependent kinases (CDK) are key positive regulators of cell cycle progression and attractive targets in oncology. SCH 727965 inhibits CDK2, CDK5, CDK1, and CDK9 activity in vitro with IC(50) values of 1, 1, 3, and 4 nmol/L, respectively. SCH 727965 was selected as a clinical candidate using a functional screen in vivo that integrated both efficacy(More)
Temozolomide (SCH 52365; TEMODAL) is an antineoplastic agent with activity against a broad spectrum of murine tumors. This compound is currently marketed in the European Union for the treatment of patients with glioblastoma multiforme and anaplastic astrocytoma, which are serious and aggressive types of brain cancers. It has been postulated that(More)
5-(3-Methyltriazen-1-yl)-imidazo-4-carboximide (MTIC) is a highly unstable compound which is believed to be the biologically active degradation product of the antitumor agent temozolomide. An HPLC method has been developed and validated for the analysis of MTIC in human plasma. Because of the instability of MTIC, sample processing was kept to minimal. The(More)
Glycidol (2,3-epoxy-1-propanol), an industrial chemical, has been shown to be a reproductive toxicant in short-term studies and a carcinogen in rats and mice in oncogenicity studies. The reproductive toxicity of glycidol was believed to result from its conversion to alpha-chlorohydrin by the action of HCl in the stomach. The comparative disposition of(More)
The metabolism, disposition, and excretion of ethyl carbamate (EC) was investigated following oral or iv administration of a wide range of doses to male rats and mice. At a low dose, 4.75 mg/kg, administered iv, approximately 98% was exhaled as CO2 within 8 or 12 hr by mice or rats, respectively. However, as the dose increased, the percentage of dose(More)
In the current drug discovery environment, higher-throughput analytical assays have become essential to keep pace with the screening demands for drug metabolism and pharmacokinetics (DMPK) attributes. This has been dictated by advances primarily in chemical procedures, notably combinatorial and parallel syntheses, which has resulted in many-fold increases(More)
Highly lipophilic compounds are often encountered in the early stages of drug discovery. The apparent permeability (Papp) of these compounds in Caco-2 cell could be underestimated because of considerable retention by the Caco-2 monolayer and non-specific binding to transwell surface. We have utilized a general approach for the determination of permeability(More)