Learn More
Utilizing the surface plasmon resonance effect in gold nanoparticles enables their use as contrast agents in a variety of applications for compound cellular imaging. However, most techniques suffer from poor signal to noise ratio (SNR) statistics due to high shot noise that is associated with low photon count in addition to high background noise. We(More)
We present a fast, wide-field holography system for detecting photothermally excited gold nanospheres with combined quantitative phase imaging. An interferometric photothermal optical lock-in approach (POLI) is shown to improve SNR for detecting nanoparticles (NPs) on multiple substrates, including a monolayer of NPs on a silanized coverslip, and NPs bound(More)
In this paper we present a technique aimed for simultaneous detection of multiple types of gold nanoparticles (GNPs) within a biological sample, using lock-in detection. We image the sample using a number of modulated laser beams that correspond to the number of GNP species that label a given sample. The final image where the GNPs are spatially separated is(More)
Localization of a single fluorescent particle with sub-diffraction-limit accuracy is a key merit in localization microscopy. Existing methods such as photoactivated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM) achieve localization accuracies of single emitters that can reach an order of magnitude lower than the(More)
In this paper we present the configurations of two nanometer scale structures--one of them optically controllable and the second one magnetically controllable. The first involves an array of nanoparticles that are made up of two layers (i.e., Au on top of a Si layer). The device may exhibits a wide range of plasmonic resonance according to external photonic(More)
The ability to track single fluorescent particles within a three dimensional (3D) cellular environment can provide valuable insights into cellular processes. In this paper, we present a modified nonlinear image decomposition technique called K-factor that reshapes the 3D point spread function (PSF) of an XYZ image stack into a narrow Gaussian profile. The(More)
Localization of a single fluorescent particle with sub-diffraction limit accuracy is a key merit in fluorescence microscopy. Implementation of nonlinear filtering algorithms prior the localization process can improve the localization accuracy of standard existing methods and also enable the localization of overlapping particles, allowing the use of(More)
A method for eliminating the unwanted terms in an on axis hologram is presented. In this method, free randomly distributed nanoparticles are in proximity to the object and their Brownian motion encodes the spatial features of the object in the recorded hologram. The nanoparticles are localized and a decoding pattern is calculated for each frame. This(More)
  • 1