Learn More
Increasing the number of available sources of information may impair or facilitate performance, depending on the capacity of the processing system. Tests performed on response time distributions are proving to be useful tools in determining the workload capacity (as well as other properties) of cognitive systems. In this article, we develop a framework and(More)
Systems factorial technology (SFT) is a theory-driven set of methodologies oriented toward identification of basic mechanisms, such as parallel versus serial processing, of perception and cognition. Studies employing SFT in visual search with small display sizes have repeatedly shown decisive evidence for parallel processing. The first strong evidence for(More)
A huge set of focused attention experiments show that when presented with color words printed in color, observers report the ink color faster if the carrier word is the name of the color rather than the name of an alternative color, the Stroop effect. There is also a large number (although not so numerous as the Stroop task) of so-called "redundant targets(More)
This investigation brings together a response-time system identification methodology (e.g., Townsend & Wenger Psychonomic Bulletin & Review 11, 391-418, 2004a) and an accuracy methodology, intended to assess models of integration across stimulus dimensions (features, modalities, etc.) that were proposed by Shaw and colleagues (e.g., Mulligan & Shaw(More)
The presence of the Stroop effect betrays the fact that the carrier words were read in the face of instructions to ignore them and to respond to the target ink colors. In this study, we probed the nature of this involuntary reading by comparing color performance with that in a new forced-reading Stroop task in which responding is strictly contingent on(More)
Does processing more than one stimulus concurrently impede or facilitate performance relative to processing just one stimulus? This fundamental question about workload capacity was surprisingly difficult to address empirically until Townsend and Nozawa (1995) developed a set of nonparametric analyses called systems factorial technology. We develop an(More)
Systems Factorial Technology is a powerful framework for investigating the fundamental properties of human information processing such as architecture (i.e., serial or parallel processing) and capacity (how processing efficiency is affected by increased workload). The Survivor Interaction Contrast (SIC) and the Capacity Coefficient are effective measures in(More)
People are especially efficient in processing certain visual stimuli such as human faces or good configurations. It has been suggested that topology and geometry play important roles in configural perception. Visual search is one area in which configurality seems to matter. When either of 2 target features leads to a correct response and the sequence(More)
Best practice in understanding and caring for people with advanced Alzheimer's disease presents extraordinary challenges. Their severe and deteriorating cognitive impairments are such that carers find progressive difficulty in authentically ascertaining and responding to interests, preferences, and needs. Deep assessment, a novel multifaceted framework(More)