Amgad Droby

Vinzenz Fleischer6
René-Maxime Gracien4
6Vinzenz Fleischer
4René-Maxime Gracien
3Stephanie-Michelle Hof
Learn More
Multi-centre MRI studies of the brain are essential for enrolling large and diverse patient cohorts, as required for the investigation of heterogeneous neurological and psychiatric diseases. However, the multi-site comparison of standard MRI data sets that are weighted with respect to tissue parameters such as the relaxation times (T1, T2) and proton(More)
  • Sarah C. Reitz, Stephanie-Michelle Hof, Vinzenz Fleischer, Alla Brodski, Adriane Gröger, René-Maxime Gracien +6 others
  • 2016
White matter (WM) lesions with a distinct lesion-tissue contrast are the main radiological hallmark of multiple sclerosis (MS) in standard magnetic resonance imaging (MRI). Pathological WM changes beyond lesion development lack suitable contrasts, rendering the investigation of normal appearing WM (NAWM) more challenging. In this study, repeat quantitative(More)
AIM The evaluation of inner retinal layer thickness can serve as a direct biomarker for monitoring the course of inflammatory diseases of the central nervous system such as multiple sclerosis (MS). Using optical coherence tomography (OCT), thinning of the retinal nerve fibre layer and changes in deeper retinal layers have been observed in patients with MS.(More)
T2 relaxation time is a quantitative MRI in vivo surrogate of cerebral tissue damage in multiple sclerosis (MS) patients. Cortical T2 prolongation is a known feature in later disease stages, but has not been demonstrated in the cortical normal appearing gray matter (NAGM) in early MS. This study centers on the quantitative evaluation of the tissue parameter(More)
PURPOSE In secondary progressive Multiple Sclerosis (SPMS), global neurodegeneration as a driver of disability gains importance in comparison to focal inflammatory processes. However, clinical MRI does not visualize changes of tissue composition outside MS lesions. This quantitative MRI (qMRI) study investigated cortical and deep gray matter (GM) proton(More)
Typical multiple sclerosis (MS) lesions occur in the brain as well as in the spinal cord. However, two extreme magnetic resonance imaging phenotypes appear occasionally: those with predominantly spinal cord lesions (MS + SL) and those with cerebral lesions and no detectable spinal lesions (MS + CL). We assessed whether morphological differences can be found(More)
Infratentorial lesions have been assigned an equivalent weighting to supratentorial plaques in the new McDonald criteria for diagnosing multiple sclerosis. Moreover, their presence has been shown to have prognostic value for disability. However, their spatial distribution and impact on network damage is not well understood. As a preliminary step in this(More)
Diffuse inflammation in multiple sclerosis (MS) extends beyond focal lesion sites, affecting interconnected regions; however, little is known about the impact of an individual lesion affecting major white matter (WM) pathways on brain functional connectivity (FC). Here, we longitudinally assessed the effects of acute and chronic lesions on FC in(More)
Multiple sclerosis (MS) is a progressive neurological disorder that affects the central nervous system. Functional magnetic resonance imaging (fMRI) has been employed to track the course and disease progression in patients with MS. The two main aims of this study were to apply in a data-driven approach the independent component analysis (ICA) in the spatial(More)
  • 1