Learn More
Heat stress in farm animals, such as cattle and buffalo during summer and post-summer seasons is a problem for livestock producers. The effect of heat stress becomes pronounced when heat stress is accompanied with ambient humidity impairing the immune status, growth, production and reproductive performance of animals. Increase in HSP70 levels from cell(More)
Alveolar epithelium is composed of alveolar epithelial cells of type I (AEC I) and type II (AEC II). AEC II secrete lung surfactant by means of exocytosis. P2X(7) receptor (P2X(7)R), a P2 purinergic receptor, has been implicated in the regulation of synaptic transmission and inflammation. Here, we report that P2X(7)R, which is expressed in AEC I but not AEC(More)
Acute lung injury (ALI) is characterized by pulmonary endothelial and epithelial cell damage, and loss of the alveolar-capillary barrier. We have previously shown that P2X7 receptor (P2X7R), a cell death receptor, is specifically expressed in alveolar epithelial type I cells (AEC I). In this study, we hypothesized that P2X7R-mediated purinergic signaling(More)
Lung surfactant reduces surface tension and maintains the stability of alveoli. How surfactant is released from alveolar epithelial type II cells is not fully understood. Vacuolar ATPase (V-ATPase) is the enzyme responsible for pumping H(+) into lamellar bodies and is required for the processing of surfactant proteins and the packaging of surfactant lipids.(More)
Neutrophil infiltration represents the early acute inflammatory response in acute lung injury. The recruitment of neutrophils from the peripheral blood across the endothelial-epithelial barrier into the alveolar airspace is highly regulated by the adhesion molecules on alveolar epithelial cells (AECs). Wnt/β-catenin signaling is involved in the progression(More)
Annexin A2, a calcium-dependent phospholipid-binding protein, is abundantly expressed in alveolar type II cells where it plays a role in lung surfactant secretion. Nevertheless, little is known about the details of its cellular pathways. To identify annexin A2-regulated or associated proteins, we silenced endogenous annexin A2 expression in rat alveolar(More)
Lung surfactant is secreted via exocytosis of lamellar bodies from alveolar epithelial type II cells. Whether micro-RNAs regulate lung surfactant secretion is unknown. Micro-RNA-375 (miR-375) has been shown to be involved in insulin secretion. In this article, we report that the overexpression of miR-375 inhibited lung surfactant secretion. However,(More)
P2X7 receptor (P2X7R) is a purinergic ion-channel receptor. We have previously shown that the activation of P2X7R in alveolar type I cells stimulates surfactant secretion in alveolar type II cells. In this study, we determined whether miR-150 regulates P2X7R-mediated surfactant secretion. The miR-150 expression level in alveolar type II cells was much(More)
Purinergic P2X7 receptor (P2X7R), an ATP-gated cation channel, is unique among all other family members because of its ability to respond to various stimuli and to modulate pro-inflammatory signaling. The activation of P2X7R in immune cells is absolutely required for mature interleukin -1beta (IL-1beta) and IL-18 production and release. Lung alveoli are(More)
Lung surfactant is crucial for reducing the surface tension of alveolar space, thus preventing the alveoli from collapse. Lung surfactant is synthesized in alveolar epithelial type II cells and stored in lamellar bodies before being released via the fusion of lamellar bodies with the apical plasma membrane. SNAREs (soluble N-ethylmaleimide-sensitive fusion(More)