Learn More
Age-related macular degeneration is a retinal disease with important damage at the RPE layer. This layer is considered a target for therapeutical approaches. Stem cell transplantation is a promising option for retinal diseases. Adipose derived mesenchymal stem cells secret growth factors which might play a significant role in RPE maintenance. This study(More)
Culturing of human retinal pigment epithelial cells (hRPE) is the initial step in cell therapy of some retinal diseases. To transfer these cells into clinical use, it is necessary to guarantee that they are well differentiated and contamination free. Fluorescence microscopy is the easiest method to do this, but it is associated with operator subjectivity,(More)
The aim of this study is to investigate the use of elastin-like recombinamers (ELRs) as a substrate that can maintain the growth, phenotype, and functional characteristics of retinal pigment epithelial (RPE) cells efficiently and as a suitable carrier for the transplantation of autologous RPE cells for treatment of age-related macular degeneration (AMD).(More)
Mesenchymal stem cell (MSC) therapy is promising for neuroprotection but there is no report of an appropriate in vitro model mimicking the situation of the in vivo retina that is able to test the effect of MSCs in suspension or encapsulated with/without a drug combination. This study aims to establish a viable mixed co-culture model having three layers:(More)
The aim of this study was to investigate the use of bioactive RGD-containing elastin-like recombinamers (ELR-RGDs) as a substrate that can maintain human retinal pigment epithelial cell (hRPE) phenotype and growth pattern. Results obtained are compared with previously published behavior of ARPE19 cells. The extension of these results to hRPE is required(More)
Retinal pigment epithelial (RPE) cells are currently in the "spotlight" of cell therapy approaches to some retinal diseases. The analysis of the expressed proteins of RPE primary cells is an essential step for many of these approaches. But the emission of autofluorescence by RPE cells produces higher background noise interference thereby creating an(More)
Retinal stem cells (RSCs) are promising in cell replacement strategies for retinal diseases. RSCs can migrate, differentiate, and integrate into retina. However, RSCs transplantation needs an adequate support; chitosan membrane (ChM) could be one, which can carry RSCs with high feasibility to support their integration into retina. RSCs were isolated,(More)
  • 1