Amar H. Flood

Learn More
Two switchable, palindromically constituted bistable [3]rotaxanes have been designed and synthesized with a pair of mechanically mobile rings encircling a single dumbbell. These designs are reminiscent of a "molecular muscle" for the purposes of amplifying and harnessing molecular mechanical motions. The location of the two cyclobis(paraquat-p-phenylene)(More)
We report on the kinetics and ground-state thermodynamics associated with electrochemically driven molecular mechanical switching of three bistable [2]rotaxanes in acetonitrile solution, polymer electrolyte gels, and molecular-switch tunnel junctions (MSTJs). For all rotaxanes a pi-electron-deficient cyclobis(paraquat-p-phenylene) (CBPQT4+) ring component(More)
Molecular compounds—comprised of mechanically interlocked components—such as rotaxanes and catenanes can be designed to display readily controllable internal movements of one component with respect to the other. Since the weak noncovalent bonding interactions that contribute to the template-directed synthesis of such compounds live on between the components(More)
We propose a design for an electrochemically driven RGB dye based on a tristable [2]catenane, in which the color of the molecule can be switched between Red, Green, and Blue by merely changing voltage. Based on DFT calculations, we conclude that the tristable [2]catenane should consist of a CBPQT4+ ring interlocked with a polyether macrocyle containing DNP(More)
The reduction of a redox-active ligand is shown to drive reversible switching of a Cu(I) [2]pseudorotaxane ([2]PR(+)) into the reduced [3]pseudorotaxane ([3]PR(+)) by a bimolecular mechanism. The unreduced pseudorotaxanes [2]PR(+) and [3]PR(2+) are initially self-assembled from the binucleating ligand, 3,6-bis(5-methyl-2-pyridine)-1,2,4,5-tetrazine(More)
Bistable [2]rotaxanes display controllable switching properties in solution, on surfaces, and in devices. These phenomena are based on the electrochemically and electrically driven mechanical shuttling motion of the ring-shaped component, cyclobis(paraquat-p-phenylene) (CBPQT(4+)), between a monopyrrolotetrathiafulvalene (mpTTF) unit and a(More)
Shape-persistent macrocycles are attractive functional targets for synthesis, molecular recognition, and hierarchical self-assembly. Such macrocycles are noncollapsible and geometrically well-defined, and they are traditionally characterized by having repeat units and low conformational flexibility. Here, we find it necessary to refine these ideas in the(More)