Amar H. Flood

Learn More
We report on the kinetics and ground-state thermodynamics associated with electrochemically driven molecular mechanical switching of three bistable [2]rotaxanes in acetonitrile solution, polymer electrolyte gels, and molecular-switch tunnel junctions (MSTJs). For all rotaxanes a pi-electron-deficient cyclobis(paraquat-p-phenylene) (CBPQT4+) ring component(More)
Bistable [2]rotaxanes display controllable switching properties in solution, on surfaces, and in devices. These phenomena are based on the electrochemically and electrically driven mechanical shuttling motion of the ring-shaped component, cyclobis(paraquat-p-phenylene) (CBPQT(4+)), between a monopyrrolotetrathiafulvalene (mpTTF) unit and a(More)
Shape-persistent macrocycles are attractive functional targets for synthesis, molecular recognition, and hierarchical self-assembly. Such macrocycles are noncollapsible and geometrically well-defined, and they are traditionally characterized by having repeat units and low conformational flexibility. Here, we find it necessary to refine these ideas in the(More)
—This paper describes the design, assembly, fabrication, and evaluation of artificial molecular machines with the goal of implementing their internal nanoscale movements within NanoElectroMechanical Systems (NEMS) in an efficient manner. These machines, a unique class of switchable molecular compounds in the shape of bistable [2]rotaxanes, exhibit internal(More)
  • 1