Amandine Jullienne

Learn More
Tissue plasminogen activator (tPA) is a serine protease with pleiotropic actions in the CNS, such as synaptic plasticity and neuronal death. Some effects of tPA require its interaction with the GluN1 subunit of the NMDA receptor (NMDAR), leading to a potentiation of NMDAR signaling. We have reported previously that the pro-neurotoxic effect of tPA is(More)
BACKGROUND AND PURPOSE Despite side effects including N-methyl-d-aspartate-mediated neurotoxicity, recombinant tissue-type plasminogen activator (rtPA) remains the only approved acute treatment for ischemic stroke. Memantine, used for treatment of Alzheimer disease, is an antagonist for N-methyl-d-aspartate receptors. We investigated whether memantine could(More)
Owing to its ability to generate the clot-dissolving protease plasmin, tissue plasminogen activator (tPA) is the only approved drug for the acute treatment of ischemic stroke. However, tPA also promotes hemorrhagic transformation and excitotoxic events. High mobility group box-1 protein (HMGB-1) is a non-histone transcription factor and a pro-inflammatory(More)
BACKGROUND AND PURPOSE Despite the effectiveness of recombinant tissue-type plasminogen activator (r-tPA) during the acute phase of ischemic stroke, the therapy remains limited by a narrow time window and the occurrence of occasional vascular side effects, particularly symptomatic hemorrhages. Our aim was to investigate the mechanisms underlying the(More)
Recombinant tissue-type plasminogen activator (tPA) is the fibrinolytic drug of choice to treat stroke patients. However, a growing body of evidence indicates that besides its beneficial thrombolytic role, tPA can also have a deleterious effect on the ischaemic brain. Although ageing influences stroke incidence, complications and outcome, age-dependent(More)
Glutamate excitotoxicity is a consolidated hypothesis in neonatal brain injuries and tissue plasminogen activator (t-PA) participates in the processes through proteolytic and receptor mediated effects. In brain microvascular endothelial cell (nBMEC) cultures from neonates, t-PA content and release upon glutamate are higher than in adult (aBMECs) cultures.(More)
Since endothelial cells can be targeted by large contrast-carrying particles, molecular imaging of cerebrovascular cell activation is highly promising to evaluate the underlying inflammation of the central nervous system (CNS). In this study, we aimed to demonstrate that molecular magnetic resonance imaging (MRI) of cerebrovascular cell activation can(More)
BACKGROUND Tissue plasminogen activator (tPA) exerts multiple functions in the central nervous system, depending on the partner with which it interacts. In particular, tPA acts as a positive neuromodulator of N-methyl-D-aspartate glutamatergic receptors (NMDAR). At the molecular level, it has been proposed that the pro-neurotoxicity mediated by tPA might(More)
I schemic stroke is a leading cause of death and permanent disability in adults worldwide. Nevertheless, recombinant tissue-type plasminogen activator (r-tPA; Actilyse) is the only acute treatment currently available. When efficient in dissolving blood clots, r-tPA improves clinical outcomes in patients with ischemic stroke. 1 Unfortunately, it is(More)
  • 1