Amanda S. Fivian-Hughes

Learn More
Correct identification of translational start sites is important for understanding protein function and transcriptional regulation. The annotated translational start sites contained in genome databases are often predicted using bioinformatics and are rarely verified experimentally, and so are not all accurate. Therefore, we devised a simple approach for(More)
Thymidylate synthase (TS) enzymes catalyse the biosynthesis of deoxythymidine monophosphate (dTMP or thymidylate), and so are important for DNA replication and repair. Two different types of TS proteins have been described (ThyA and ThyX), which have different enzymic mechanisms and unrelated structures. Mycobacteria are unusual as they encode both thyA and(More)
In Mycobacterium tuberculosis, the genes Rv1954A-Rv1957 form an operon that includes Rv1955 and Rv1956 which encode the HigB toxin and the HigA antitoxin respectively. We are interested in the role and regulation of this operon, since toxin-antitoxin systems have been suggested to play a part in the formation of persister cells in mycobacteria. To(More)
Bacterial chromosomally encoded type II toxin-antitoxin (TA) loci may be involved in survival upon exposure to stress and have been linked to persistence and dormancy. Therefore, understanding the role of the numerous predicted TA loci within the human pathogen Mycobacterium tuberculosis has become a topic of great interest. Antitoxin proteins are known to(More)
Burkholderia cepacia complex (Bcc) bacteria possess biotechnologically useful properties that contrast with their opportunistic pathogenicity. The rhizosphere fitness of Bcc bacteria is central to their biocontrol and bioremediation activities. However, it is not known whether this differs between species or between environmental and clinical strains. We(More)
Bacteriophages are present in virtually all ecosystems, and bacteria have developed multiple antiphage strategies to counter their attacks. Clostridium difficile is an important pathogen causing severe intestinal infections in humans and animals. Here we show that the conserved cell-surface protein CwpV provides antiphage protection in C. difficile. This(More)
  • 1