Amanda R Thimmesch

Learn More
Oxygen (O(2)) is life essential but as a drug has a maximum positive biological benefit and accompanying toxicity effects. Oxygen is therapeutic for treatment of hypoxemia and hypoxia associated with many pathological processes. Pathophysiological processes are associated with increased levels of hyperoxia-induced reactive O(2) species (ROS) which may(More)
Traumatic brain injury (TBI) is a major cause of death and disability in the United States and causes mitochondrial damage leading to impaired brain function. The purpose of this review is to (1) describe TBI processes and manifestations, (2) examine the mitochondrial alterations after TBI, specifically increased reactive oxygen species production,(More)
BACKGROUND Traumatic brain injury (TBI) is an acquired brain injury that occurs when there is sudden trauma that leads to brain damage. This acute complex event can happen when the head is violently or suddenly struck or an object pierces the skull or brain. The current principal treatment of TBI includes various pharmaceutical agents, hyperbaric oxygen,(More)
Diastolic heart failure, or heart failure with preserved ejection fraction, is a leading cause of morbidity and mortality. There are no current therapies effective in improving outcomes for these patients. The aim of this article is to review the literature and examine the role of coenzyme Q10 in heart failure with preserved ejection fraction related to(More)
Hemorrhagic shock (HS) is a leading cause of death in traumatic injury. Ischemia and hypoxia in HS and fluid resuscitation (FR) creates a condition that facilitates excessive generation of reactive oxygen species (ROS). This is a major factor causing increased leukocyte-endothelial cell adhesive interactions and inflammation in the microcirculation(More)
Systems biology applies advances in technology and new fields of study including genomics, transcriptomics, proteomics, and metabolomics to the development of new treatments and approaches of care for the critically ill and injured patient. An understanding of systems biology enhances a nurse's ability to implement evidence-based practice and to educate(More)
Haemorrhagic shock (HS) and fluid resuscitation can lead to increased reactive oxygen species (ROS), contributing to ischaemia-reperfusion injury and organ damage. Ubiquinol is a potent antioxidant that decreases ROS. This study examined the effects of ubiquinol administered with fluid resuscitation following controlled HS. Adult male Sprague-Dawley rats(More)
There is still much debate over the optimal fluid to use for resuscitation. Different studies have indicated either crystalloid or colloid is the ideal intravenous solution to administer, based on mortality or various physiological parameters. Older studies found differences between crystalloids and colloids. However, with the evolving science of fluid(More)
BACKGROUND Traumatic brain injury is a major cause of morbidity and mortality that affects military service members and veterans. PURPOSE Explore the effects of ubiquinol before traumatic brain injury on cerebral gene expression to elucidate molecular mechanisms of ubiquinol neuroprotection. METHOD In this experimental study, Fisher rats in the(More)