Amanda M Maple

Learn More
Ontogenetic treatment of rats with the dopamine D(2)-like receptor agonist quinpirole produces a significant increase in dopamine D(2) receptor sensitivity that persists throughout the animal's lifetime, a phenomenon known as D(2) priming. The present study was designed to investigate the effects of priming of the D(2) receptor on the expression of three(More)
RATIONALE Increases in dopamine D2-like receptor function are common in several psychological disorders that demonstrate a four to five fold increase in nicotine abuse compared to the general population. OBJECTIVE The objective of this study was to analyze the interaction of sex differences and sensitization to nicotine in rats D2 receptor primed as(More)
This review focuses on nicotine comorbidity in schizophrenia, and the insight into this problem provided by rodent models of schizophrenia. A particular focus is on age differences in the response to nicotine, and how this relates to the development of the disease and difficulties in treatment. Schizophrenia is a particularly difficult disease to model in(More)
We have shown that repeated neonatal quinpirole (QUIN; a dopamine D2-like receptor agonist) treatment in rats produces long-lasting supersensitization of dopamine D2 receptors that persists into adulthood but without producing a change in receptor number. The current study was designed to analyze the effects of neonatal QUIN on auditory sensorimotor gating(More)
Neonatal quinpirole (dopamine D(2)/D(3) agonist) treatment to rats has been shown to increase dopamine D(2) receptor sensitivity throughout the animal's lifetime. Male and female Sprague-Dawley rats were neonatalally treated with quinpirole (1 mg/kg) from postnatal days (P) 1-21 and raised to adulthood. Beginning on P62, rats were administered the atypical(More)
The abuse of methylenedioxymethamphetamine (MDMA) during pregnancy is of concern. MDMA treatment of rats during a period of brain growth analogous to late human gestation leads to neurochemical and behavioral changes. MDMA from postnatal day (P)11-20 in rats produces reductions in serotonin and deficits in spatial and route-based navigation. In this(More)
Pharmacologic and genetic findings have implicated the serotonin 2A receptor (5-HT2AR) in the etiology of schizophrenia. Recent studies have shown reduced 5-HT2AR levels in schizophrenia patients, yet the cause of this difference is unknown. Environmental factors, such as stress, also influence schizophrenia risk, yet little is known about how environment(More)
Phencyclidine (PCP), a noncompetitive N-methyl d-aspartate (NMDA) receptor antagonist, provides the most complete pharmacologic model of schizophrenia in humans and animals. Acute PCP causes hyperlocomotion, disrupts prepulse inhibition (PPI), and increases social avoidance in rats. We have previously shown that repeated treatment with the dopamine (DA)(More)
  • 1